#### ALLOWANCE

The prescribed difference between the design size (maximum material) and the basic size.

#### **BASIC PROFILE**

The cyclical outline, in an axial plane, of the permanently established boundary between the provinces of the external and internal threads. All deviations are with respect to this boundary.

#### **BASIC SIZE**

That size from which the limits of size are derived by the application of allowances and tolerances.

#### **BEARING SURFACE**

The bearing surface is the supporting or locating surface of a fastener with



respect to the part which it fastens (mates). The loading of a fastener is usually through the bearing surface.

#### **BODY DIAMETER**

The body diameter is the diameter of the body of a threaded fastener.



#### CHAMFER

The conical surface at the starting end of a thread.

#### CHAMFER POINT

A chamfer point is a truncated cone point, the end of which is approximately



flat and perpendicular to the fastener axis. These points on threaded fasteners generally have point included angles of 45 to 90 degrees and a point diameter equal to or slightly less than the minor diameter of the thread. This point is intended to facilitate entry of fasteners into holes at assembly.

#### **CLASS OF THREAD**

An alphanumerical designation to indicate the standard grade of tolerance and allowance specified for a thread.

#### Class 1A and 1B

Classes 1A and 1B are very loosely toleranced, therefore, this class produces the loosest fit; that is, the greatest amount of play in assembly. An allowance is applied to the external thread in class 1A and 1B. This class is ideally suited where quick and easy assembly is of prime design concern.

Class 1A and 1B is standard for only coarse and fine threads with sizes of 1/4 inch and larger. Very few fasteners produced in Canada and the United States have this class of fit.

#### Class 2A and 2B

Class 2A and 2B is the most common thread class specified for inch series fasteners. Class 2A for external threads has an allowance while class 2B for internal threads does not. Class 2A and 2B threads offer excellent value of fit when considering manufacturing conveniences and economy, against fastener performance. This class offers a good grade of

#### **GLOSSARY OF FASTENER TERMS**

commercial products such as machine screws, bolts, nuts, and studs for most interchangeable equipment parts and structural applications. It is estimated that over 90 percent of inch fastener series in Canada and the United States have class 2A and 2B threads.

#### Class 3A and 3B

Class 3A and 3B threads have no specific allowance and are manufactured to restrictive tolerances. These classes of threads are intended for exceptionally highgrade commercial products such as socket cap screws, set screws, aerospace bolts and nuts, and connecting rod bolts where close or snug fit for precision is essential, as well as in applications where safety is a critical design feature.

#### CLEARANCE FIT

The maximum material condition clearance between mating assembled parts.

#### COLD WORKING

Cold working is the plastic deformation of metals at temperatures below that which will cause recrystallization. This cold working is accompanied by an increase in strength and hardness, called work hardening, and a decrease in ductility. The cold working effects of forming bolt and screw heads, of extruding bolt shanks, and of roll threading increase strength values, often considerably.

#### CONE POINT

A cone point is a sharp conical point designed to perform perfo-



rating or aligning functions at assembly.

#### COUNTERSINK

Flare or bevel at the hole end.

#### **CUT THREAD**

Threads are cut or chased so that the unthreaded portion of shank is equal to major diameter of the thread.

#### ELEMENT

Elements of a thread are flank angle, root, crest, pitch, lead angle, surface finish, major, minor, and pitch diameters.

#### EXTERNAL THREAD

A screw thread formed on the outside of a cylindrical surface.

#### FASTENER

A fastener is a mechanical device for holding two or more bodies in definite positions with respect to each other.

## FULL OR NOMINAL

#### DIAMETER BODY

A full or nominal diameter body is a body the diameter of which is generally within the dimensional limits of the major diameter of the thread. Sometimes referred to as 'full size body'.

#### GIMLET POINT

A gimlet point is a threaded cone point usually having a point angle of 45



Gimlet Point

to 50 degrees. It is used on thread forming screws such as Type 'AB' tapping screws, wood screws, lag screws, etc.

# www.boltsupply.com

1

## **GLOSSARY OF FASTENER TERMS**

#### GRADES OF FASTENERS

In the SAE system, grades are designated by numbers from 1 through 8. These numbers have no quantitative relationship to strength properties, except that increasing numbers represent increasing tensile strengths. Decimals after whole numbers indicate the same basic properties, with variations in either material or processing treatment. The ASTM grades are designated by their document number. Some of the ASTM standards describe two or more types or grades with the difference being either a variation of material – for example, ASTM A325 Types 1, 2 and 3 – or modified properties of the same material – ASTM A307 Grades A and B.

#### HEAD

The head of a fastener is the enlarged shape preformed on



one end of a headed fastener to provide a bearing surface.

#### **HIGH STRENGTH FASTENER**

A high strength fastener is a fastener having high tensile and shear strengths attained through combinations of materials, work-hardening and heat treatment.

#### HEAT TREATMENT

The strength and ductility of metals can be significantly altered by various types of heating operations. Heat treatment refers to any of a number of operations involving the heating of the parts in appropriate furnaces, gas fired or electric, often with controlled atmosphere, and the subsequent cooling at controlled rates. In the manufacture of fasteners the strength and ductility of the parts can in this way be adjusted, within limits, to fit the particular application.

#### **INCOMPLETE THREAD**

Threads having crests or roots not fully formed. Incomplete threads occur at the end of pointed externally threaded products, at countersinks in the faces of threaded holes or nuts, and at thread runouts where the threaded section blends into the unthreaded shank.

#### THREAD

A thread is a portion of a screw thread encompassed by one pitch. On a single-start thread it is equal to one turn.

#### MAJOR CYLINDER

An imaginary cylinder that would bound the crests of an external straight thread or the roots of an internal straight thread.

#### METHODS OF MANUFACTURE

Threads are either rolled or cut – the former increases the major diameter of the thread



over the diameter of the unthreaded shank; the latter, the unthreaded portion of the shank is equal to the major diameter of the thread. Cold rolled threading produces a stronger part and is less apt to shear or rupture under stress than cut threading. The metal flow indicating the strength is shown by the above diagram.

## THE BOLT SUPPLY HOUSE LTD.

#### **MAJOR DIAMETER**

On an internal thread, the diameter at the root and on an external thread the major diameter is the diameter at the thread crest.

#### MINOR DIAMETER

On an internal thread, the diameter at the crests and on an external thread, the diameter at the root.

#### NOMINAL SIZE

The designation which is used for the purpose of general identification. The basic major diameter of a threaded fastener is often referred to as 'nominal size'.

#### PHYSICAL PROPERTIES

Physical properties are the properties defining the basic characteristics of the material or fastener.

#### PITCH

The pitch of a thread having uniform spacing is the distance, measured parallel to its axis, between corresponding points on adjacent thread forms in the same axial plane and on the same side of the axis. Pitch is equal to the lead divided by the number of thread starts.

#### POINT

The point of a fastener is the configuration of the end of the shank of a headed fastener or of each

Point

end of a headless fastener.

#### **PROOF LOAD**

Proof load represents the maximum useable load limit of the fastener for many design-service applications. Proof load is commonly defined as the tension applied load which the fastener must support without evidence of any deformation. Often, proof load and yield strength are interpreted as being the same.

**Note:** Proof load is a force measurement. The units are pounds or newton. Yield strength is a stress measurement. The units are PSI or MPa. The stress at the proof load is 90-93% of the yield strength.

#### **REFERENCE DIMENSION**

A dimension usually without tolerance, used for information purposes only. It does not govern production or inspection operations. A reference dimension is derived from other values shown on the drawing or on related drawings.

#### **RIGHT-HAND THREAD**

A thread is right-hand if, when viewed end-on, it winds in a clockwise and receding direction. A thread is considered to be right-hand unless specifically indicated.

#### **ROLLED THREAD**

Threads are cold formed by squeezing the blank between reciprocating serrated dies. This acts to increase the major diameter of the thread over and above the diameter of unthreaded shank (if any).

#### ROOT

That surface of the thread that joins the flanks of adjacent thread forms and is immediately adjacent to the cylinder from which the thread projects.

#### SHANK

The shank is that portion of a headed fastener which lies between the head and th



the head and the extreme point.

#### SHEAR STRENGTH

Shear is transverse rupture. It is caused by a pushing or pulling force at  $90^{\circ}$  from the axis of a part. Thus, a rivet used as a pulley axle will shear if the load on the pulley exceeds the shear value of the rivet. Shear strengths generally are 60% of the specified minimum tensile strength.

#### SHOULDER

A shoulder is an enlarged portion of the body of a threaded fas-



tener or shank of an unthreaded fastener.

#### **TENSILE STRENGTH**

Tensile strength, or ultimate strength, is that property of a material which determines how much load it can withstand without breaking. It is calculated by determining the tensile stress corresponding to the maximum load observed in a tension test. Cold working raises the tensile strength of most metals and alloys. Heat treatment can often be used to increase or reduce the tensile strength.

#### THREADED FASTENER

A threaded fastener is a fastener  $-\,$  a portion of which has some form of screw thread.

#### THREAD PITCH

The distance measured parallel to the thread axis between corresponding points on adjacent threads. Pitch is equal to the lead divided by the number of thread starts. Unified threads are designated in threads per inch and their thread pitch is reciprocal of the number of threads per inch (tpi). Metric threads are designated by their actual pitch.

#### THREAD SERIES

Thread series are groups of diameter-pitch combinations distinguished from each other by the number of threads per inch applied to a series of specific diameters. There are two general series classifications: standard and special.

#### **Coarse Thread Series Applications**

The coarse thread series (UNC/UNRC) is generally used for the bulk production of screws, bolts, and nuts. It is commonly used in relatively low strength materials such as cast iron, aluminum, magnesium, brass, bronze, and plastic because the coarse series threads provide more resistance to internal thread stripping than the fine or extra-fine series. Coarse series threads are advantageous where rapid assembly or disassembly is required, or if corrosion or damage from nicks due to handling or use is likely.

#### Fine Thread Series Applications.

The fine thread series (UNF/UNRF) is commonly used for bolts and nuts in high strength applications. This series has less thread depth and a larger minor diameter than coarse series threads. Consequently, thinner

"PROFESSIONALS SERVING PROFESSIONALS"

## **GLOSSARY OF FASTENER TERMS**

TECHNICAL

walls are permitted for internal threads and more strength is available to external threads than for coarse series threads of the same nominal size.

#### 8-Thread Series.

The 8-thread series (8UN) is a uniform-pitch series for large diameters or as a compromise between coarse and fine thread series. Although originally intended for high-pressure-joint bolts and nuts, it is now widely used as a substitute for the coarse thread series for diameters larger than 1 inch.

#### **12-Thread Series**

The 12-thread series (12UN) is a uniform-pitch series for large diameters requiring threads of medium-fine pitch. Although originally intended for boiler practice, it is now used as a continuation of the fine thread series for diameters larger than 1-1/2 inch.

#### THREADS PER INCH

The number of thread pitches per inch. It is the reciprocal of the axial pitch value in inches.

#### TOLERANCE

The total amount of variation permitted for the size of a dimension. It is the difference between the maximum limit of size and the minimum limit of size.

# UNDERHEAD FILLET

An underhead fillet is the fillet at the junction of the head and shank of a headed fastener.



#### WASHER FACE

A washer face is a circular boss on the bearing surface of a bolt or nut.



#### YIELD STRENGTH

Yield strength is defined as the tension applied stress at which the fastener experiences a specified amount of permanent deformation. The fastener material simply has been stressed beyond its elastic limit and has entered its plastic zone. Yield strengths of machined test specimens are easily determined because of their uniform cross-sectional area throughout the stressed length. It has been noted that the yield strength characteristics of test specimens do not always parallel those of the full size fastener from which they are taken. This is because the beneficial effects of cold working may be completely lost when the test piece is machined from the parent product. It is difficult to test full size fasteners for yield strength because of the different strain rates in areas such as: the fully threaded portion; the thread runout; and the unthreaded shank which comprises the stressed length. Because of this, the 'proof load' system was introduced as an approved technique for testing a fastener's deformation characteristics.

www.boltsupply.com

# What is a screw? What is a bolt?

One of the questions most frequently asked about fasteners during the past decades has been: "What's the difference between a screw and bolt?" A seemingly innocent question, it is nevertheless one that until 1965 did not lend itself to a positive clear-cut answer. Every "expert" had an answer, usually different from others, and no matter how logical or persuasive it was, it seemed that the criteria employed to differentiate screws from bolts permitted far more exceptions to the rule than compliance with it.

While many engineers looked upon this question as an interesting exercising in semantics, it created for the fastener manufacturer and his customer an increasingly troublesome variety of problems. By the early 60's, it became quite clear that the need to establish a pattern of consistency in the nomenclature of threaded fasteners could no longer be ignored.

It just so happened that Subcommittee 2 of Standards Committee B18 of the American Society of Mechanical Engineers was studying the possibility of simplifying the standards for square and hexagon bolts, screws and nuts. Recognizing that conflicts in product terminology existed just within the few products under its own technical responsibility, the Subcommittee volunteered to prepare definitions, together with an identification procedure, which would permit the positive classification of any externally headed and threaded fastener as a bolt or a screw.

In accepting the assignment, the Subcommittee was aware that certain basic factors of fastener life were inviolable. They realized that most of the product names being currently used had long histories of acceptance commercially, and that massive changes, regardless upon what logic they might be based, would not be welcomed. They also appreciated that any new definition for a bolt and a screw should reflect to the maximum degree possible generic understandings of what these products really are. Further, they knew that any procedure designed to differentiate screws from bolts must be simple, quickly performed, primarily visual, and independent of an intimate knowledge of product design and manufacturing methods. Moreover, the conclusion yielded by the investigation should be reproducible.

#### **Finding the Solution**

The first step, of course, was a study of encyclopedia and dictionary definitions. Previous efforts within this country to identify such products were reviewed, and also the basis of differentiation recognized in other countries of the world were considered. The one common thread that seemed to wind its way through the many principles examined was that **screws are used in tapped holes; bolts are used with nuts.** 

This one generally accepted generic difference set the stage of solution of the riddle. By introducing a small, yet novel, twist in this concept, suddenly, for the first time, black and white definitions materialized, and the gray area of overlap disappeared.

Once the Subcommittee had accepted this new concept, it was a logical continuation to analyze the principal engineering features of a threaded fastener which give it the capability of being used in a tapped hole. As soon as this work was completed, a specification was drafted, presenting the new definitions and outlining a step-by-step procedure for determining whether a headed and threaded product should be properly identified as a bolt or as a screw. The specification was circulated and following further refinement, was given final endorsement by the Subcommittee and approval by ASME Standards Committee B18. "Specifications for Identification of Bolts and Screws" was published

for the first time as an Appendix of the newly issued American National Standard "Square and Hex Bolts and Screws", ANSI B18.2.1-1965.

The new subtlety involved simply modifying the intent of the criterion, "screws are used in tapped holes," to be: "screws have the capability of being used in tapped hole." This change led to an extremely simple and yet surprisingly pure set of criteria for distinguishing a bolt from a screw. The basic premise is that if a fastener is so designed as to permit it to be properly assembled into a tapped hole, it is a screw. If, on the other hand, the design of the fastener indicates that it is not suited for use in a tapped hole and should be assembled with a nut, it is a bolt. Thus, the difference is based on the design capability of the fastener, and not on actual service application. This new approach effectively removes the doubt from those fasteners which are used sometimes in tapped holes and sometimes with nuts.

#### **How It Works**

To see how the system works, consider some of the more familiar types of threaded fasteners and how they fit the definitions and identification procedure. Many are immediately obvious by the application of the primary criteria of ASME B18.12.1 Appendix B. Wood screws, lag screws, and most types of tapping screws do not have thread forms which can accommodate standard nuts; therefore, these products are automatically classified as screws. Plow, carriage, track, elevator, and step bolts have head configurations which prevent their being tightened by turning the head during assembly. Consequently, this makes their use in a tapped hole impractical, and automatically classifies these products as bolt.

This screening out still leaves a number of externally threaded fasteners, such as square bolts, hex cap screws, hex bolts, machine screws, and socket head cap screws, which have an indicated dual ability to be turned into a tapped hole, or to be assembled with a nut. However, in accordance with the ASME B18.2.1 Appendix, if the majority of the design characteristics assist the proper use in a tapped or other preformed hole, the product is a screw regardless of its installed service application. The supplementary criteria are then applied to determine if its primary characteristics contribute to its function as a screw. These supplementary criteria include the following elements:

- Bearing Surface
- Head Angularity
- Body Control
- Shank Straightness
- Thread Concentricity
- Point
- Length Tolerance

Applying these criteria, the majority being present would define the product in question as a screw.

The criteria established are nondimensional and apply equally to either inch or metric fasteners. The complete information may be found in Appendix B or ASME B18.2.1: Specifications for Identification of Bolts and Screws, page N-52.

Interestingly, of all of the many standard types of fasteners now covered by American National Standards, only in one or two isolated instances was a change in nomenclature from screw to bolt, or bolt to screw, necessary to provide a complete pattern of consistency. These changes were completed in the late 1960's. Importantly, as new products are designed and introduced into American National Standards, they can be assigned correct nomenclature at the outset.

www.boltsupply.com

# SQUARE AND HEX BOLTS AND SCREWS (INCH SERIES)

# Appendix B Specifications for Identification of Bolts and Screws

(This Appendix is not part of ASME B18.2.1-1996 and is included for information only.)

#### B1. Scope

This specification establishes a recommended procedure for determining the identity of an externally threaded fastener as a bolt or as a screw.

#### **B2.** Definitions

#### B2.1Bolt

A bolt is an externally threaded fastener designed for insertion through holes in assembled parts, and is normally intended to be tightened or released by torquing a nut.

#### B2.2Screw

A screw is an externally threaded fastener capable of being inserted into holes in assembled parts, of mating with a preformed internal thread or forming its own thread, and of being tightened or released by torquing the head.

#### **B3. Explanatory Data**

A bolt is designed for assembly with a nut. A screw has features in its design which make it capable of being used in a tapped or other preformed hole in the work. Because of basic design, it is possible to use certain types of screws in combination with a nut. Any externally threaded fastener which has a majority of the design characteristics which assist its proper use in a tapped or other preformed hole is a screw, regardless of how it is used in its service application.

#### **B4.** Procedure

To identify an externally threaded fastener as a bolt or as a screw, two sets of criteria — Primary and Supplementary — shall be applied. The Primary Critera (Paras. B5.1 through B5.4) shall be applied first. Any faster which satisfies one of the Primary Criteria shall be identified accordingly, and no further examination need be made. The Supplementary Criteria (Paras. B6.1 through B6.9, and not listed in order of importance or priority of application) shall be applied to a fastener which does not satisfy complete any one of the Primary Criteria. The Supplementary Criteria detail the principal features in the design of an externally threaded fastener which contribute to its proper use as a screw. A fastener having a majority of these characteristics shall be identified as a screw.

#### **B5.** Primary Criteria

- **B5.1** An externally threaded fastener which, because of head design or other feature, is prevented from being turned during assembly, and which can be tightened or released only by torquing a nut, is a bolt. (Example: round head bolts, track bolts, plow bolts.)
- B5.2 An externally threaded fastener which has a thread form which prohibits assembly with a nut having a straight thread of multiple pitch length, is a screw. (Example: wood screws, tapping screws.)
- **B5.3** An externally threaded fastener, which must be assembled with a nut to perform its intended service, is a bolt. (Example: heavy hex structural bolt.)
- **B5.4** An externally threaded fastener, which must be torqued by its head into a tapped or other preformed hole to perform its intended service is a screw. (Example: square head set screw.)

# BOLT THREADS AND THREAD LENGTHS

# THREADS - MACHINE SCREW AND BOLT SIZES

Number of Threads per Inch – Unified Standard Coarse Thread Series, Class 2A Fit, recommended for general use.

| Diameter | UNC Coarse | UNF Fine | Diameter | UNC Coarse | UNF Fine |
|----------|------------|----------|----------|------------|----------|
| of Bolt  | Thread     | Thread   | of Bolt  | Thread     | Thread   |
| (in)     | Series     | Series   | (in)     | Series     | Series   |
| No. 0    | -          | 80       | 9/16     | 12         | 18       |
| No. 1    | 64         | 72       | 5/8      | 11         | 18       |
| No. 2    | 56         | 64       | 3/4      | 10         | 16       |
| No. 3    | 48         | 56       | 7/8      | 9          | 14       |
| No. 4    | 40         | 48       | 1        | 8          | 14 (12)* |
| No. 5    | 40         | 44       | 1-1/8    | 7          | 12       |
| No. 6    | 32         | 40       | 1-1/4    | 7          | 12       |
| No. 8    | 32         | 36       | 1-3/8    | 6          | 12       |
| No. 10   | 24         | 32       | 1-1/2    | 6          | 12       |
| No. 12   | 24         | 28       | 1-3/4    | 5          | -        |
| 1/4      | 20         | 28       | 2        | 4-1/2      | -        |
| 5/16     | 18         | 24       | 2-1/4    | 4-1/2      | -        |
| 3/8      | 16         | 24       | 2-1/2    | 4          | -        |
| 7/16     | 14         | 20       | 2-3/4    | 4          | -        |
| 1/2      | 13         | 20       | 3        | 4          | -        |

\*Indicates number of threads per inch for Unified Fine (1"-12 thread is U.N.F. standard. However 1"-14 thread is popular demand and generally stocked in place of 1"-12.)

| Diameter  | Stud UN<br>Threads | Bolts UNC | Bolts UNF | Bolts UNS |
|-----------|--------------------|-----------|-----------|-----------|
| in Inches | per Inch           | per Inch  | per Inch  | per Inch  |
| 1/4       | 20                 | 20        | 28        | po:       |
| 5/16      | 18                 | 18        | 24        |           |
| 3/8       | 16                 | 16        | 24        |           |
| 7/16      | 14                 | 14        | 20        |           |
| 1/2       | 13                 | 13        | 20        |           |
| 9/16      | 12                 | 12        | 18        |           |
| 5/8       | 11                 | 11        | 18        |           |
| 3/4       | 10                 | 10        | 16        |           |
| 7/8       | 9                  | 9         | 14        |           |
| 1         | 8                  | 8         | 12        | 14        |
| 1-1/8     | 8                  | 7         | 12        |           |
| 1-1/4     | 8                  | 7         | 12        |           |
| 1-3/8     | 8                  | 6         | 12        |           |
| 1-1/2     | 8                  | 6         | 12        |           |
| 1-5/8     | 8                  |           |           |           |
| 1-3/4     | 8                  | 5         |           |           |
| 1-78      | 8                  |           |           |           |
| 2         | 8                  | 4-1/2     |           |           |
| 2-1/4     | 8                  | 4-1/2     |           |           |
| 2-1/2     | 8                  | 4         |           |           |
| 2-3/4     | 8                  | 4         |           |           |
| 3         | 8                  | 4         |           |           |
| 3-1/4     | 8                  | 4         |           |           |
| 3-1/2     | 8                  | 4         |           |           |
| 3-3/4     | 8                  | 4         |           |           |
| 4         | 8                  | 4         |           |           |

#### **THREAD LENGTHS**

#### All Standard Except Lag Screws

#### Thread Length Formula:

For bolts 6" and shorter – twice the diameter plus 1/4". (2D + 1/4") Longer than 6" – twice the diameter plus 1/2". (2D + 1/2"). When bolts are short for formula thread length, thread will extend as close to head or shoulder as practical. In actual production, thread lengths may be longer than the formula thread lengths.

| Diameter | 6" and  | Longer  | Diameter | 6" and  | Longer  |
|----------|---------|---------|----------|---------|---------|
| of Bolt  | Shorter | Than 6" | of Bolt  | Shorter | Than 6" |
| (in)     | (in)    | (in)    | (in)     | (in)    | (in)    |
| No. 10   | 5/8     | 7/8     | 1        | 2-1/4   | 2-1/2   |
| 1/4      | 3/4     | 1       | 1-1/8    | 2-1/2   | 2-3/4   |
| 5/16     | 7/8     | 1-1/8   | 1-1/4    | 2-3/4   | 3       |
| 3/8      | 1       | 1-1/4   | 1-3/8    | 3       | 3-1/4   |
| 7/16     | 1-1/8   | 1-3/8   | 1-1/2    | 3-1/4   | 3-1/2   |
| 1/2      | 1-1/4   | 1-1/2   | 1-5/8    | 3-1/2   | 3-3/4   |
| 5/8      | 1-1/2   | 1-3/4   | 1-3/4    | 3-3/4   | 4       |
| 3/4      | 1-3/4   | 2       | 1-7/8    | 4       | 4-1/4   |
| 7/8      | 2       | 2-1/4   | 2        | 4-1/4   | 4-1/2   |

| "A prudent    | person profits | from personal  |
|---------------|----------------|----------------|
| experience, a | wise one from  | the experience |
| of others."   |                |                |

**JOSEPH COLLINS** 

# FASTENER IDENTIFICATION MARKINGS

#### **IDENTIFICATION MARKINGS**

It is a mandatory requirement in SAE and ASTM standards that fasteners of the medium carbon and alloy steel strength grades be marked for grade identification. The only exceptions are slotted and recessed head screws and very small size fasteners – generally, smaller than 1/4" where head size doesn't permit marking. Additionally, and of major importance, these same standards require **all** carbon steel externally threaded fasteners be further marked to identify the manufacturer. Identification markings are the purchaser's best guarantee of product quality. By indicating the strength properties the fastener should have and the producing com-

pany, markings provide traceability and accountability. With the ever present threat of a liability action in case of a service failure, traceability is ample incentive to any reputable producer to exercise all of the care necessary to manufacture fully conforming parts. Carbon steel bolts and screws without markings should be viewed with a high degree of suspicion. The only prudent assumption is that the fastener has the lowest strength properties permitted in any steel grade, and if not manufacturer marked, then it was produced either by a non-North American company or by one using questionable practices.

#### Grade Identification Markings for Popular Grades of Carbon Steel Externally Threaded Fasteners

| Questa                      |                                   |                                   | Proof              | Tensile              |          |      |          |
|-----------------------------|-----------------------------------|-----------------------------------|--------------------|----------------------|----------|------|----------|
| Grade                       |                                   |                                   | Load               | Strength             | Llaudur  |      |          |
| Morking                     | Creation                          | Nominal Size (in)                 | Stress             | Min<br>koj           | Min      | Mox  | Coo Noto |
| Marking<br>Matarial: Low    | Specification                     | Nominal Size (III)                | KSI                | KSI                  | MIN      | max  | See Note |
|                             | SAE 1420 Grade 1                  | 1/4 thru 1 1/2                    | 22                 | 60                   | P70      | R100 |          |
|                             | SAE 1429 - Grade 2                | 1/4 tillu 1-1/2                   | 55                 | 74                   | B80      | B100 |          |
|                             | SAL 5425 - Glade 2                |                                   | 33                 | 60                   | B70      | B100 |          |
|                             | ASTM A307 - Grade A               | 1/4 thru 4                        |                    | 60                   | B60      | B100 |          |
|                             | ASTM AS07 - Grade B               | 1/4 thru 4                        |                    | 60 min               | B69      | B95  |          |
|                             | ASTIMASON - GIAGE D               | 1/4 unu 4                         | _                  | 100 max              | D03      | D35  |          |
|                             |                                   |                                   |                    | Too max              |          |      |          |
| Material: Medi              | um Carbon Steel, Quenched and     | Tempered                          |                    |                      |          |      |          |
|                             | SAE J429 – Grade 5                | 1/4 thru 1                        | 85                 | 120                  | C25      | C34  |          |
| $\land$                     | ASTM A449 – Type 1                | over 1 thru 1-1/2                 | 74                 | 105                  | C19      | C30  |          |
| $( \geq )$                  | ASTM A449 – Type 1                | over 1-1/2 thru 3                 | 55                 | 90                   | 183      | 235  | 3        |
|                             |                                   |                                   |                    |                      |          |      |          |
| Material: Medi              | um Carbon Steel, Quenched and     | I Tempered                        |                    |                      |          |      |          |
| ~                           | ASTM A325 – Type 1                | 1/2 thru 1                        | 85                 | 120                  | C24      | C35  | 5        |
|                             |                                   | over 1 to 1-1/2                   | 74                 | 105                  | C19      | C31  |          |
| A325                        |                                   |                                   |                    |                      |          |      |          |
| Material: Low               | Carbon Martensite Steel, Quenc    | hed and Tempered                  |                    |                      |          |      |          |
|                             | ASTM A325 – Type 2                | 1/2 thru 1                        | 85                 | 120                  | C24      | C35  |          |
| A325                        |                                   | over 1 to 1-1/2                   | 74                 | 105                  | C19      | C31  |          |
| Material: Atmo              | spheric Corrosion Resistant Ste   | el, Quenched and Tempered         |                    |                      |          |      |          |
| $\bigcirc$                  | ASTM A325 – Type 3                | 1/2 thru 1                        | 85                 | 120                  | C24      | C35  | 6        |
| <u>A325</u>                 |                                   | over 1 to 1-1/2                   | 74                 | 105                  | C19      | C31  |          |
| Material: Medi              | um Carbon Alloy Steel, Quenche    | ed and Tempered                   |                    |                      |          |      |          |
|                             | SAE J429 – Grade 8                | 1/4 thru 1-1/2                    | 120                | 150                  | C33      | C39  |          |
|                             | ASTM A354 – Grade BD              | 1/4 thru 2-1/2                    | 120                | 150                  | C33      | C39  | 7        |
|                             |                                   | over 2-1/2 thru 4                 | 105                | 140                  | C31      | C39  | 7        |
| Material: Medi              | um Carbon Allov Steel, Quenche    | ad and Tempered                   |                    |                      |          |      |          |
| ~                           | ASTM A490 - Type 1                | 1/2 thru 1-1/2                    | 120                | 150 min              | C33      | C38  |          |
| A490                        |                                   | 1/2 und 1 1/2                     | 120                | 170 max              | 000      | 000  |          |
| NOTES:<br>1. In addition to | the indicated grade marking all g | rades included in this Table mu   | st be marked for m | nanufacturer identif | ication. |      |          |
| 2. While hex he             | ads are shown, grade markings ar  | oply equally to products with oth | ner head configura | tions.               |          |      |          |

4. Grade 5.1 is a popular grade for sems.

- 5. A325 Type 1 bolts may also be marked with 3 radial lines 120° apart in addition to the A325 marking.
- 6. The bolt manufacturer, at his option, may add other markings to indicate the use of atmospheric corrosion resistant steel. 7. A354 Grade BD products, in sizes 1-1/2" and smaller, are identified as shown and, at the manufacturer's option, may have the letters BD added. Larger sizes
- are marked only BD.

# **TORQUE GUIDE CHART**

BOLTS

1/

3

# THE BOLT SUPPLY HOUSE LTD.

# **TECHNICAL**

|                            |        | •        | GRADE 2  |  |  |  |  |
|----------------------------|--------|----------|----------|--|--|--|--|
|                            | Proof  | Yield    | Tensile  |  |  |  |  |
| iameter                    | Load   | Strength | Strength |  |  |  |  |
| /4"-3/4"                   | 55,000 | 57,000   | 74,000   |  |  |  |  |
| /4" - 1-1/2"               | 33,000 | 36,000   | 60,000   |  |  |  |  |
| Low or Medium Carbon Steel |        |          |          |  |  |  |  |

Identification • Strength • Clamp • Torque • Materials

| TIGHTENING TORQUE GUIDE                |               |             |              |  |  |  |  |  |  |
|----------------------------------------|---------------|-------------|--------------|--|--|--|--|--|--|
| SAE Grade 2—Coarse Thread              |               |             |              |  |  |  |  |  |  |
| SIZE                                   | CLAMP<br>LOAD | PLAIN       | PLATED       |  |  |  |  |  |  |
| 1⁄4-20 (.250)                          | 1,313         | 66 in. lbs  | 49 in. lbs.  |  |  |  |  |  |  |
| ‰ <b>-18 (.3125)</b>                   | 2,175         | 11 ft. lbs  | 8 ft. lbs.   |  |  |  |  |  |  |
| <sup>3</sup> / <sub>8</sub> -16 (.375) | 3,188         | 20 ft. lbs  | 15 ft.lbs.   |  |  |  |  |  |  |
| <sup>7</sup> /16 <b>-14 (.4375)</b>    | 4,388         | 32 ft.lbs.  | 24 ft. lbs.  |  |  |  |  |  |  |
| 1⁄2-13 (.500)                          | 5,850         | 49 ft.lbs.  | 37 ft. lbs.  |  |  |  |  |  |  |
| %-11 (.625)                            | 9,300         | 97 ft.lbs.  | 73 ft. lbs.  |  |  |  |  |  |  |
| ¾ <b>-10</b> (.750)                    | 11,400        | 166 ft.lbs. | 125 ft. lbs. |  |  |  |  |  |  |
| <sup>7</sup> / <sub>8</sub> -9 (.875)  | 13,800        | 173 ft.lbs. | 129 ft. lbs. |  |  |  |  |  |  |
| 1-8 (1.000)                            | 15,000        | 250 ft.lbs. | 188 ft. lbs. |  |  |  |  |  |  |
| 11/8-7 (1.125)                         | 18,900        | 354 ft.lbs. | 286 ft. lbs. |  |  |  |  |  |  |
| 1¼-7 (1.250)                           | 24,000        | 500 ft.lbs. | 375 ft. lbs. |  |  |  |  |  |  |
| 1%-6 (1.375)                           | 28,575        | 655 ft.lbs. | 491 ft. lbs. |  |  |  |  |  |  |
| 1½-6 (1.500)                           | 34,800        | 870 ft.lbs. | 952 ft. lbs. |  |  |  |  |  |  |

**GRADE 5** A325 A325 <u>325</u> Proof Yield Tensile Diameter Load Strength Strength 1/4"-1" 85,000 92,000 120,000 3/4" - 1-1/2" 74,000 81,000 105,000 Medium Carbon Steel, Quenched and Tempered

| TIGHTENING TORQUE GUIDE                |               |              |               |  |  |  |  |  |
|----------------------------------------|---------------|--------------|---------------|--|--|--|--|--|
| SAE Grade 5—Coarse Thread              |               |              |               |  |  |  |  |  |
| SIZE                                   | CLAMP<br>LOAD | PLAIN        | PLATED        |  |  |  |  |  |
| 1/4-20 (.250)                          | 2,025         | 8 ft. lbs    | 76 in. lbs.   |  |  |  |  |  |
| <sup>5</sup> ∕₁₀-18 (.3125)            | 3,338         | 17 ft. lbs   | 13 ft. lbs.   |  |  |  |  |  |
| <sup>3</sup> / <sub>4</sub> -16 (.375) | 4,950         | 31 ft. lbs   | 23 ft.lbs.    |  |  |  |  |  |
| 7/16-14 (.4375)                        | 6,788         | 50 ft.lbs.   | 37 ft. lbs.   |  |  |  |  |  |
| 1⁄2-13 (.500)                          | 9,075         | 76 ft.lbs.   | 57 ft. lbs.   |  |  |  |  |  |
| %16-12 (.5625)                         | 11,625        | 109 ft.lbs.  | 82 ft. lbs.   |  |  |  |  |  |
| %-11 (.625)                            | 14,400        | 150 ft.lbs.  | 112 ft. lbs.  |  |  |  |  |  |
| <sup>3</sup> ⁄4-10 (.750)              | 21,300        | 266 ft.lbs.  | 200 ft. lbs.  |  |  |  |  |  |
| <sup>7</sup> / <sub>8</sub> -9 (.875)  | 29,475        | 430 ft.lbs.  | 322 ft. lbs.  |  |  |  |  |  |
| 1-8 (1.000)                            | 38,625        | 644 ft.lbs.  | 483 ft. lbs.  |  |  |  |  |  |
| 11/8-7 (1.125)                         | 42,375        | 794 ft.lbs.  | 596 ft. lbs.  |  |  |  |  |  |
| 1¼-7 (1.250)                           | 53,775        | 1120 ft.lbs. | 840 ft. lbs.  |  |  |  |  |  |
| 1%-6 (1.375)                           | 64,125        | 1470 ft.lbs. | 1102 ft. lbs. |  |  |  |  |  |
| 1½-6 (1.500)                           | 78,000        | 1950 ft.lbs. | 1462 ft. lbs. |  |  |  |  |  |

Yield Strength is the load at which the fastener exhibits a specified elongation at a specific load.

Tensile Strength is the minimum total load that will fail the fastener.

Clamp Load – 75% x Proof x Stress Area. Also called the fastener preload or initial load. The 'Clamp' Load is the true maximum load of any fastener. Proof Load is the load which the fastener must withstand without a permanent set.

Torque Dry assumes a coefficient of friction of 0.20.

Torque Lubricated assumes a coefficient of friction of 0.15. Minimum Tensile - minimum load at which the fastener will fail. Minimum safe working load is 4:1.

A325 is the designation for 'structural' Grade 5 bolts which have larger head dimensions.

|                |                | GRADE 8      |
|----------------|----------------|--------------|
| Proof          | Yield          | Tensile      |
| Load           | Strength       | Strength     |
| 120,000        | 130,000        | 150,000      |
| Carbon Alloy S | teel, Quenched | and Tempered |

# TIGHTENING TORQUE GUIDE

| SAE Grade 8—Coarse Thread              |               |              |               |  |  |  |  |  |
|----------------------------------------|---------------|--------------|---------------|--|--|--|--|--|
| SIZE                                   | CLAMP<br>LOAD | PLAIN        | PLATED        |  |  |  |  |  |
| 1⁄4-20 (.250)                          | 2,850         | 12 ft. lbs   | 9 ft. Ibs.    |  |  |  |  |  |
| 5/16-18 (.3125)                        | 4,725         | 25 ft. lbs   | 18 ft. lbs.   |  |  |  |  |  |
| ¾ <b>-1</b> 6 (.375)                   | 6,975         | 44 ft. lbs   | 33 ft.lbs.    |  |  |  |  |  |
| 7/16-14 (.4375)                        | 9,600         | 70 ft.lbs.   | 52 ft. lbs.   |  |  |  |  |  |
| 1⁄2-13 (.500)                          | 12,750        | 106 ft.lbs.  | 80 ft. lbs.   |  |  |  |  |  |
| %16-12 (.5625)                         | 16,350        | 153 ft.lbs.  | 115 ft. lbs.  |  |  |  |  |  |
| %-11 (.625)                            | 20,325        | 212 ft.lbs.  | 159 ft. lbs.  |  |  |  |  |  |
| <sup>3</sup> / <sub>4</sub> -10 (.750) | 30,075        | 376 ft.lbs.  | 282 ft. lbs.  |  |  |  |  |  |
| <sup>7</sup> / <sub>8</sub> -9 (.875)  | 41,550        | 606 ft.lbs.  | 454 ft. lbs.  |  |  |  |  |  |
| 1-8 (1.000)                            | 54,525        | 909 ft.lbs.  | 682 ft. lbs.  |  |  |  |  |  |
| 11/8-7 (1.125)                         | 68,700        | 1288 ft.lbs. | 966 ft. lbs.  |  |  |  |  |  |
| 1¼-7 (1.250)                           | 87,225        | 1817 ft.lbs. | 1363 ft. lbs. |  |  |  |  |  |
| 1%-6 (1.375)                           | 103,950       | 2682 ft.lbs. | 1787 ft. lbs. |  |  |  |  |  |
| 1½-6 (1.500)                           | 126,450       | 3161 ft.lbs. | 2371 ft. lbs. |  |  |  |  |  |
| SAE                                    | Grade 8-      | -Fine Thre   | ad            |  |  |  |  |  |
| SIZE                                   | CLAMP<br>Load | PLAIN        | PLATED        |  |  |  |  |  |
| 1/4-28 (.250)                          | 3,263         | 14 ft. lbs   | 10 ft. lbs.   |  |  |  |  |  |
| 5/16-24 (.3125)                        | 5,113         | 27 ft. lbs   | 20 ft. lbs.   |  |  |  |  |  |
| 3°-24 (.375)                           | 7,875         | 49 ft. lbs   | 37 ft. lbs.   |  |  |  |  |  |
| 7/16-20 (.4375)                        | 10,650        | 78 ft.lbs.   | 58 ft. lbs.   |  |  |  |  |  |
| 1⁄2-20 (.500)                          | 14,400        | 120 ft.lbs.  | 90 ft. lbs.   |  |  |  |  |  |
| %16-18 (.5625)                         | 18,300        | 172 ft.lbs.  | 129 ft. lbs.  |  |  |  |  |  |
| %-18 (.625)                            | 23,025        | 240 ft.lbs.  | 180 ft. lbs.  |  |  |  |  |  |
| ¾-16 (.750)                            | 33,600        | 420 ft.lbs.  | 315 ft. lbs.  |  |  |  |  |  |
| <sup>7</sup> / <sub>8</sub> -14 (.875) | 45,825        | 668 ft.lbs.  | 501 ft. lbs.  |  |  |  |  |  |
| 1-12 (1.000)                           | 59,700        | 995 ft.lbs.  | 746 ft. lbs.  |  |  |  |  |  |
| 1-14 (1.000)                           | 61,125        | 1019 ft.lbs. | 764 ft. lbs.  |  |  |  |  |  |
| 1%-12 (1.125)                          | 77,025        | 1444 ft.lbs. | 1083 ft. lbs. |  |  |  |  |  |
| 1¼-12 (1.250)                          | 96,600        | 2012 ft.lbs. | 1509 ft. lbs. |  |  |  |  |  |
| 1%-12 (1.3/5)                          | 118,350       | 2/12 ft.lbs. | 2034 ft. lbs. |  |  |  |  |  |
| 172-12 (1.500)                         | 142,275       | 305/ TLIDS.  | 2068 π. IDS.  |  |  |  |  |  |

#### THREADED ROD DATA

|          | Stressed  |          | Steel Strength (Ib) |          |          |             |          |  |  |  |
|----------|-----------|----------|---------------------|----------|----------|-------------|----------|--|--|--|
| Rod      | Cross     |          | ASTM A 307 Rod (    | Grade 2) | Sta      | 304 or 316) |          |  |  |  |
| Diameter | Section   | Yield    | Tensile             | Shear    | Yield    | Tensile     | Shear    |  |  |  |
| (inch)   | (sq inch) | Strength | Strength            | Strength | Strength | Strength    | Strength |  |  |  |
| 1/4      | 0.0318    | 1,145    | 1,908               | 1,259    | 954      | 2,385       | 1,590    |  |  |  |
| 3/8      | 0.0775    | 2,790    | 4,650               | 3,069    | 2,325    | 5,813       | 3,875    |  |  |  |
| 1/2      | 0.1419    | 5,108    | 8,514               | 5,619    | 4,257    | 10,653      | 7,095    |  |  |  |
| 5/8      | 0.226     | 8,136    | 13,560              | 8,950    | 6,780    | 16,950      | 11,330   |  |  |  |
| 3/4      | 0.334     | 12,024   | 20,040              | 13,226   | 10,020   | 25,050      | 16,700   |  |  |  |
| 7/8      | 0.462     | 16,632   | 27,720              | 18,295   | 13,860   | 34,650      | 23,100   |  |  |  |
| 1        | 0.606     | 21,816   | 36,360              | 23,998   | 18,180   | 45,450      | 30,300   |  |  |  |
| 1-1/4    | 0.969     | 34,884   | 58,140              | 38,372   | 29,070   | 72,675      | 48,450   |  |  |  |
| 1-1/2    | 1.045     | 37,620   | 62,700              | 41,382   | 31,350   | 78,375      | 52,250   |  |  |  |

# **MATERIALS - CARBON & ALLOY STEELS**

#### STEEL FASTENERS

#### **CARBON STEEL FASTENERS**

Approximately 90 percent of all fasteners are manufactured from carbon steel. Steel has excellent workability, a broad range of strength properties, and the raw material is quite inexpensive. There are over 100 different standard strength grades for steel fasteners, each with its own set of properties and designations.

In general, carbon steel fastener strength grades can be placed into three broad groupings involving low carbon, medium carbon, and alloy steel. The most widely referenced strength grade for carbon steel external threaded fasteners is detailed in the SAE J429 standard. The system is comprised of bolt grades made from low carbon steel through to alloy steels.

The common grades of the SAE system are repeated and expanded upon in separate ASTM standards, notably A307, A449, A325 and A490.

#### LOW CARBON STEELS (Used for GR2 bolts)

Low carbon steels, as used for fasteners, are defined as those with insufficient carbon content to permit a predictable response to a strengthening heat treatment process. The most commonly used analysis are AISI 1006, 1008, 1016, 1018, 1021 and 1022. These steels have good workability, they can be case hardened, and are weldable.

**Note:** (Piping Bolt) The low carbon steel fastener ASTM A307 is a special bolt used in piping and flange work. It has properties similar to other low carbon steel bolts except that it has the added requirement of a specified maximum tensile strength. The reason for this is to ensure that the bolt will fracture, before breaking a cast iron flange on a pump or valve, if the bolt is inadvertently over-tightened.

#### MEDIUM CARBON STEELS (Used for GR5 bolts)

Medium carbon steels are heat treatable, which means that through metallurgical treatments the tensile strength of the fastener after processing can be significantly higher than that of its original raw material. Popular analysis are AISI 1030, 1035, 1038 and 1541. On a strength-to-cost basis, medium carbon heat treated steel fasteners provide more load carrying capability per unit of cost than any other known metal. Their yield-to-tensile ratio is the lowest of all heat treated steels which gives them superior ductility. In fact, they are frequently referred to as 'forgiving' which means they have a punching bag ability to absorb punishment and service abuse.

#### ALLOY STEELS (Used for GR8 bolts)

Carbon steel is classed as an alloy steel when the maximum of the range of content specified for manganese is greater than 1.65 percent, or for silicon 0.60 percent, or for copper 0.60 percent, or when the chromium content is less than 4.0 percent (if greater it approaches being a stainless steel), or when the steel contains a specified minimum content of aluminum, boron, cobalt, columbium, molybdenum, nickel, titanium, vanadium, zirconium, or any other element added to achieve a specific effect.

#### ALLOY STEEL STUD BOLTING MATERIALS

The following grades of heat treated alloy steel studs are commonly used for high-pressure or extreme service in diameters of 1/4 inch to 4 inches, inclusive. Other grades and other diameters are available on special order.

#### ASTM A193, Grade B7

A heat treated chromium-molybdenum steel widely used for medium high temperature service. (Liquid quench -50° to  $900^{\circ}$ F, Air quench -40° to  $900^{\circ}$ F)

#### ASTM A193, Grade B7M

Similar to B7 studs except that the minimum yield and tensile strength requirements are reduced and the hardness controlled to 235 Brinell maximum. Designed for use in corrosive environments. (- $50^{\circ}$  to  $900^{\circ}$ F.)

#### ASTM A193, Grade B16

A heat treated chromium-molybdenum, vanadium steel for high pressure, high temperature service. (-50° to 1100°F.)

#### ASTM A320, Grade L7

This grade is intended for low temperature service down to minus 150°F and has a minimum Charpy impact value of 20 ft lb at this temperature. (-150° to 1100°F.)

#### ASTM A320, Grade L7M

Similar to L7 studs except that the minimum yield and tensile strength requirements are reduced and the hardness controlled to 235 Brinell maximum. This stud is designed for use in low temperature corrosive environments. (-150° to 1100°F.)

#### ASTM A193, Grade B8

These Chromium-Nickel (AISI 304) austenitic steel studs are used in corrosive environments. (-325° to 1500°F.)

#### ASTM A193, Grade B8M

These Chromium-Nickel Molybdenum (AISI 316) austenitic steel studs are used in corrosive environments. (-325° to 1500°F.)

#### CARBON AND ALLOY STEEL NUTS

#### ASTM A194, Latest Revision, Grade 2H

Suitable for use in high temperatures and high pressure conditions.

#### ASTM A194, Grade 2HM

Similar to 2H nuts except this grade is designed for use in corrosive environments.

#### ASTM A194, Latest Revision, Grade 4

Heat treated molybdenum steel nuts suitable for severe temperature and pressure conditions.

#### ASTM A194, Latest Revision, Grade L7

*New stamping* as per ASTM is **7L**. Heat treated chromemolybdenum steel nuts suitable for extreme temperature and pressure conditions. Suitable for sub-zero service conditions and have minimum Charpy impact values of ASTM spec. A320. Grade 7 down to  $-150^{\circ}$ F.

#### ASTM A194, Grade L7M

*New stamping* as per ASTM is 7<u>M</u>L. Similar to grade L7 nuts except this grade is designed for use in corrosive environments.

#### ASTM A194, Grade 8/8M

Stainless steel nuts designed for use in corrosive environments.

# **MATERIALS - MECHANICAL PROPERTIES**

# TABLE OF MECHANICAL PROPERTIES OF VARIOUS MATERIALS

|               | Common Uses |       |       |      |            | Mechanical Properties |           |          |          |          |               |
|---------------|-------------|-------|-------|------|------------|-----------------------|-----------|----------|----------|----------|---------------|
|               | Flat        |       | Shaft |      |            | Tensile               | Yield     |          | Rockwell | Rockwell |               |
| Grade         | Washers     | Shims | Keys  | Pins | Structural | Strength              | Strength  | Brinnell | 'B'      | ʻC'      | Machinability |
| 1008          | ~           |       |       |      |            | 49,000                | 41,500    | 95       |          |          | 55            |
| 1010          | ~           | ~     |       |      |            | 53,000                | 44,000    | 95       |          |          | 55            |
| A36           | ~           |       |       |      |            | 55,000                | 30,000    | 111      | B72      |          | 50            |
| 1018          | ~           |       | ~     | ~    |            | 64,000                | 54,000    | 126      | B85      |          | 70            |
| 1026          | ~           |       |       |      |            | 87,000                | 72,000    | 179      |          |          | 70            |
| 1035          |             |       | ~     |      |            | 72,000                | 39,500    | 143      | B90      |          | 65            |
| 1045          | ~           |       | ~     | ~    | ~          | 91,000                | 77,000    | 179      |          | C15      | 65            |
| 1144          |             |       |       | ~    |            | 108,000               | 90,000    | 217      |          | C19      | 80            |
| 12L14         | ~           |       |       | ~    |            | 78,000                | 60,000    | 163      | B86      |          | 180           |
| 1215          | ~           |       |       | ~    |            | 78,000                | 60,000    | 163      | B83      |          | 136           |
| Ledloy 300    |             |       |       | ~    |            | 78,000                | 60,000    | 163      | B83      |          | 180           |
| 1075          |             | ~     |       |      | ~          |                       |           |          |          |          |               |
| 1095          |             | ~     | ~     |      | ~          | 140,000               | 83,000    | 293      |          |          |               |
| W-1 Drill Rod |             |       |       | ~    | ~          | 100-164ksi            |           | 207-341  |          |          | 100           |
| O-1 Drill Rod |             |       |       | ~    | ~          | 100-164 ksi           |           | 207-341  |          |          | 95            |
| A-2 Drill Rod |             |       |       | ~    | ~          | 100-164 ksi           |           | 207-341  |          |          | 65            |
| 4037          |             |       |       | ~    |            | 97,000                | 94,000    | 192      |          |          | 70            |
| 4130          | ~           |       |       | ~    | ~          | 98,000                | 87,000    | 201      | 894      |          | 70            |
| 4140          | ~           |       | ~     |      | ~          | 102,000               | 90,000    | 223      |          | C19      | 66            |
| 8630          |             |       | <     |      |            | 100,000               | 95,000    | 194      |          |          |               |
| 303           |             |       | ۲     | ~    |            | 35,000                | 90,000    | 160      | B80      |          |               |
| 304           | ~           | ~     | ~     |      |            | 35,000                | 85,000    | 180      | B90      |          |               |
| 316           | ~           |       | ~     |      |            | 35,000                | 85,000    | 200      | B95      |          |               |
| Alloy 20      |             |       | <     |      |            | 80,000                | 35,000    |          |          |          |               |
| 416           |             |       | <     |      |            | 40,000                | 75,000    | 180      | B90      |          |               |
| Monel 400     | ~           |       | ~     |      |            | 70,000                | 28,000    |          |          |          |               |
| 2024          |             | ~     |       | ~    |            | 26,000                | 18,000    |          |          |          |               |
| 6061          | ~           |       | <     |      |            | 18,000                | 12,000    | 30       |          |          |               |
| C110          | ~           | ~     |       |      |            | 32-48 ksi             | 8-45 ksi  |          | 40F-47B  |          |               |
| C360          |             | ~     | ~     |      |            | 49-68 ksi             | 18-52 ksi |          | 68F-80B  |          |               |
| SAE 660       | ~           |       |       |      |            | 35,000                | 20,000    |          | 41B      |          |               |
| Olite         | ~           |       |       |      |            |                       |           |          |          |          |               |
| 52100         | ~           |       |       | ~    | ~          | 107,000               | 87,500    | 229      |          |          | 41            |
| Nylon         | ~           |       |       |      |            |                       |           |          |          |          |               |
|               |             |       |       |      |            |                       |           |          |          |          |               |

QUOTE

"Forget yourself in your work. If your employer sees that you are more concerned about your own interests than about his, that you are fussy about getting credit of every little or big thing you do, then you are apt to be passed by when a responsible job has to be filled...Don't worry about how big an increase in your salary you can contrive to get. Don't let your mind dwell on money at all, if you can help it. Throw yourself, body, soul, and spirit, into whatever you are doing...The truth is that in every organization, no matter how large or how small, someone is taking notice of any employee who shows special ability."

HARRY B. THAYER

#### **ASTM STANDARDS**

ASTM (The American Society for Testing and Materials), founded in 1898, is a scientific and technical organization formed for 'the development of standards on characteristics and performance of materials, products, systems, and services; and the promotion of related knowledge.' ASTM is the world's largest source of voluntary consensus standards.

#### **STANDARDS AND SPECIFICATIONS**

| A29/<br>A29M   | Steel bars, carbon and alloy, hot-wrought and cold-finished                                                                                 |  |  |  |  |  |  |  |
|----------------|---------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
| A31            | Steel rivets and bars for rivets, pressure vessels                                                                                          |  |  |  |  |  |  |  |
| A36            | Structural steel                                                                                                                            |  |  |  |  |  |  |  |
| A90            | Test method for weight of coating on zinc-coated (galvanized) iron and steel articles                                                       |  |  |  |  |  |  |  |
| A31            | Structural steel for ships                                                                                                                  |  |  |  |  |  |  |  |
| A143           | Safeguarding against embrittlement of hot-dip<br>galvanized structural steel products and procedure<br>for detecting embrittlement          |  |  |  |  |  |  |  |
| A153           | Zinc coating (hot-dip) on iron and steel hardware                                                                                           |  |  |  |  |  |  |  |
| A183           | Carbon steel track bolts and nuts                                                                                                           |  |  |  |  |  |  |  |
| A193/<br>A193M | Alloy steel and stainless steel bolting materials for<br>high-temperature service                                                           |  |  |  |  |  |  |  |
| A194/<br>A194M | Carbon and alloy steel nuts for bolts for high-<br>pressure and high-temperature service                                                    |  |  |  |  |  |  |  |
| A239           | Test method for locating the thinnest spot in a zinc (galvanized) coating on iron or steel articles by the Preece test (copper sulfate dip) |  |  |  |  |  |  |  |
| A242           | High-strength low-alloy structural steel                                                                                                    |  |  |  |  |  |  |  |
| A262           | Detecting susceptibility to intergranular attack in austenitic stainless steels                                                             |  |  |  |  |  |  |  |
| A276           | Stainless and heat-resisting steel bars and shapes                                                                                          |  |  |  |  |  |  |  |
| A307           | Carbon steel externally threaded standard fasteners                                                                                         |  |  |  |  |  |  |  |
| A320/<br>A320M | Alloy steel bolting materials for low-temperature service                                                                                   |  |  |  |  |  |  |  |
| A325           | High strength bolts for structural steel joints                                                                                             |  |  |  |  |  |  |  |
| A342           | Test methods for permeability of feebly magnetic materials                                                                                  |  |  |  |  |  |  |  |
| A353/<br>A353M | Pressure vessel plates, alloy steel, 9 percent<br>nickel, double-normalized and tempered                                                    |  |  |  |  |  |  |  |
| A354           | Quenched and tempered alloy steel bolts, studs, and other externally threaded fasteners                                                     |  |  |  |  |  |  |  |
| A370           | Methods and definitions for mechanical testing of                                                                                           |  |  |  |  |  |  |  |

## **MATERIALS - ASTM REFERENCE**

| A380           | Cleaning and descaling stainless steel parts, equipment, and systems                                                                 |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------|
| A385           | Providing high-quality zinc coatings (hot-dip)                                                                                       |
| A394           | Zinc-coated steel transmission tower bolts                                                                                           |
| A437/<br>A437M | Alloy steel turbine-type bolting material specially heat treated for high-temperature service                                        |
| A449           | Quenched and tempered steel bolts and studs                                                                                          |
| A453/<br>A453M | Bolting materials, high-temperature, 50 to 120 ksi<br>yield strength, with expansion coefficients<br>comparable to austenitic steels |
| A484/<br>A484M | Stainless and heat-resisting wrought steel products (except wire)                                                                    |
| A489           | Carbon steel eyebolts                                                                                                                |
| A490           | Heat-treated steel structural bolts, 150 ksi tensile strength                                                                        |
| A493F          | Stainless and heat-resisting steel for cold heading and cold forging                                                                 |
| A502           | Steel structural rivets                                                                                                              |
| A540/<br>A540M | Alloy steel bolting materials for special applications                                                                               |
| A555/<br>A555M | Stainless and heat-resisting steel wire                                                                                              |
| A563           | Carbon and alloy steel nuts                                                                                                          |
| A564           | Hot-rolled and cold-finished age-hardening stainless and heat-resisting steel bars, wire, and shapes                                 |
| A568           | Steel, carbon and high-strength low-alloy<br>hot-rolled and cold-rolled sheets                                                       |
| A574           | Alloy steel socket-head cap screws                                                                                                   |
| A582           | Free-machining stainless and heat-resisting steel bars,hot-rolled or cold-finished                                                   |
| A588/<br>A588M | High-strength low-alloy structural steel with 50 ksi minimum yield point to 4 inches thick                                           |
| A591           | Steel sheet, cold-rolled, electrolytic zinc-coated                                                                                   |
| A676           | Hot-dipped aluminum coatings on ferrous articles                                                                                     |
| A687           | High-strength non-headed steel bolts and studs                                                                                       |
| A706           | Low-alloy steel deformed bars for concrete reinforcement                                                                             |
| A709           | Structural steel for bridges                                                                                                         |
| A751           | Methods, practices, and definitions for chemical analysis of steel products                                                          |
| A788           | Steel forgings                                                                                                                       |
| B6             | Zinc (slab zinc)                                                                                                                     |

B16 Free-cutting brass rod, bar, and shapes for use in screw machines

"PROFESSIONALS SERVING PROFESSIONALS"

steel products

#### **MATERIALS - ASTM REFERENCE**

| B99            | Copper-silicon alloy wire for general purposes                                                            | B571                 |  |  |  |  |  |  |  |
|----------------|-----------------------------------------------------------------------------------------------------------|----------------------|--|--|--|--|--|--|--|
| B117           | Method of salt spray (fog) testing                                                                        | B602                 |  |  |  |  |  |  |  |
| B134           | Brass wire                                                                                                |                      |  |  |  |  |  |  |  |
| B151           | Copper-nickel-zinc alloy (nickel silver) and copper-nickel rod and bar                                    | B633<br>B695         |  |  |  |  |  |  |  |
| B154           | Method of mercurous nitrate test for copper and copper alloys                                             | B696                 |  |  |  |  |  |  |  |
| B159           | Phosphor bronze wire                                                                                      | <b>D</b> 00 <b>-</b> |  |  |  |  |  |  |  |
| B183           | Preparation of low carbon steel for electroplating                                                        | B697                 |  |  |  |  |  |  |  |
| B193           | Test method for resistivity of electrical conductor materials                                             | F432                 |  |  |  |  |  |  |  |
| B201           | Test chromate coatings on zinc and cadmium surfaces                                                       | F436                 |  |  |  |  |  |  |  |
| B211<br>B242/  | Aluminum alloy bars, rods, and wire                                                                       | F467<br>F468         |  |  |  |  |  |  |  |
| B242/<br>B242M | Preparation of high-carbon steel for electroplating                                                       | <b>FF</b> 44         |  |  |  |  |  |  |  |
| B244           | Measurement of thickness of anodic coatings                                                               |                      |  |  |  |  |  |  |  |
|                | on aluminum and other non-conductive coatings<br>on non-magnetic basis metals with eddy-current           | F593                 |  |  |  |  |  |  |  |
|                | instruments                                                                                               | F594<br>E606         |  |  |  |  |  |  |  |
| B254           | Preparation of and electroplating on stainless steel                                                      | 1000                 |  |  |  |  |  |  |  |
| B320           | Preparation of iron castings for electroplating                                                           |                      |  |  |  |  |  |  |  |
| B322           | Cleaning metals prior to electroplating                                                                   | F788                 |  |  |  |  |  |  |  |
| B342           | Test method for electrical conductivity by use of eddy current                                            | F812                 |  |  |  |  |  |  |  |
| B374           | Definitions of terms relating to electroplating                                                           | F835                 |  |  |  |  |  |  |  |
| B487           | Measurement of metal and oxide coating thicknesses<br>by microscopical examination of a cross section     | F837                 |  |  |  |  |  |  |  |
| B499           | Measurement of coating thicknesses by the magnetic method: non-magnetic coatings on magnetic basis metals | F844<br>F879         |  |  |  |  |  |  |  |
| B504           | Measurement of thickness of metallic coatings by the coulometric method                                   | F880                 |  |  |  |  |  |  |  |
| B565           | Shear testing of aluminum-alloy rivets and<br>cold-heading wire and rods                                  | F901<br>F912         |  |  |  |  |  |  |  |
| B567           | Measurement of coating thickness by the beta<br>backscatter method                                        | F959                 |  |  |  |  |  |  |  |
| B568           | Measurement of coating thickness by x-ray spectrometry                                                    |                      |  |  |  |  |  |  |  |
|                |                                                                                                           |                      |  |  |  |  |  |  |  |

"A bank is a place where they lend you an umbrella in fair weather and ask for it back again when it begins to rain."

**ROBERT FROST** 

THE BOLT SUPPLY HOUSE LTD.

- **3571** Test methods for adhesion of metallic coatings
- **B602** Attribute sampling of electrodeposited metallic coatings and related finishes
- B633 Electrodeposited coatings of zinc on iron and steel
- B695 Coatings of zinc mechanically deposited on iron and steel
- B696 Coatings of cadmium mechanically deposited on iron and steel
- **B697** Guidelines for selection of sampling plans for inspection of electrodeposited metallic coatings and related finishes on products
- F432 Roof and rock bolts and accessories
- F436 Hardened steel washers
- F467 Non-ferrous nuts for general use
- F468 Non-ferrous bolts, hex cap screws, and studs for general use
- F541 Alloy steel eyebolts
- F593 Stainless steel bolts, hex cap screws and studs
- F594 Stainless steel nuts
- **F606** Conducting tests to determine the mechanical properties of externally and internally threaded fasteners, washers, and rivets
- F788 Surface discontinuities of bolts, screws and studs, inch and metric
- F812 Surface discontinuities of nuts, inch and metric
- F835 Alloy steel socket button and flat countersunk head cap screws
- F837 Stainless steel socket head cap screws
- F844 Washers, plain (flat), unhardened for general use
- F879 Stainless steel socket button and flat countersunk head cap screws
- F880 Stainless steel socket set screws
- F901 Aluminum transmission tower bolts and nuts
- F912 Alloy steel socket set screws
- F959 Compressible-washer-type direct tension indicators for use with structural fasteners

12

www.boltsupply.com "PROFESSIONALS SEF

#### What makes stainless steel stainless?

Stainless steel must contain at least 10.5% chromium. It is the element that reacts with the oxygen in the air to form a complex chrome-oxide surface layer that is invisible but strong enough to prevent further oxygen from staining or rusting the surface. Higher levels of chromium and the addition of other alloying elements such as nickel and molybdenum enhance the surface layer and improve the corrosion resistance of the stainless material.

#### Can stainless steel rust?

Stainless does not "rust" as you think of regular steel rusting with a red oxide on the surface that flakes off. If you see red rust it is probably due to some iron particles that have contaminated the surface of the stainless steel and it is these iron particles that are rusting. Is stainless steel magnetic?

There are several types of stainless steel. Martensitic (400 series) stainless steels are strongly magnetic. Austenic (300 series) stainless steels which contain nickel have very low magnetic permeability when annealed. The situation is far less clear when these steels have been cold worked by wire drawing, rolling, heading or even heavy polishing, all of which (except the last) are common aspects of fastener manufacturing. After substantial cold working a Grade 304 stainless fastener may exhibit quite a strong response to a magnet. In general, higher the nickel to chromium ratio the more stable the austenic structure and the less magnetic response that will be induced by cold work. This means Grade 316 will be in most instances almost totally non-responsive because of its higher nickel content.

#### What is passivation?

When the amount of chromium (in an iron matrix) exceeds 10-1/2%, a complex chrome oxide forms instantaneously that prevents the further diffusion of oxygen into the surface and results in the "passive" nature of stainless steel and its resistance to oxidation (rusting) or corrosion. A chemical "dip" into 10% nitric acid plus 2% hydrofluoric acid bath enhances the development of this "Passive" oxide. Can stainless steel be welded?

Yes. Stainless steel is easily welded but the welding procedure is different than that used with carbon steel. The "filler" rod or electrode must be stainless steel.

# Stainless Steel Fasteners — Frequently Asked Questions

#### Can stainless steel be hardened?

Yes. The Austentic 300 Series stainless steel can be hardened but only through work hardening. That is by cold working the material, either by cold rolling down to lighter and lighter gauges or by drawing the wire through a die or size altering operation. Ferritic 400 Series (409, 430, 434, 439) cannot be hardened by heat treatment. Martenistic 400 Series (403, 410, 416, 420, 440) can be hardened by heat treatment.

#### What does the designation "L" mean?

The use of the letter "L" after the grade number, i.e. 304L means the carbon content is restricted to a maximum of 0.03% (normal is 0.08% maximum). This lower level of carbon is usually used where welding will be performed. The lower level of carbon helps to prevent the chromium from being depleted.

I ordered 18-8 stainless bolts and got a bolt with F593C marked on the head. Did I get the right bolt?

Yes. 18-8 is a generic specification which includes 304 stainless steel. F593C is the ASTM spec for 304 stainless steel bolts and is part of the new marking system.

#### Is there is difference in stainless steel bought in North America compared to overseas?

Generally no. In fact many North American manufacturers use stainless steel wire and rod that has been imported. The specifications are quite clear on what constitutes stainless steel no matter where it is made.

#### Is a Grade 304 stainless bolt as strong as a Grade 5 Bolt?

No. While steel bolts are graded for strength such as Grade 2-5-8, stainless steel bolts are not. Stainless steel bolts are defined by their chemical content.

#### Are stainless steel bolts EC ROHS compliant?

In stainless steel, chromium is in the metallic state which is not hazardous. The chromium in the oxide layer on passivated stainless steel is dichromium trioxide which is a trivalent compound. The chromium banned by ROHS is hexavalent chromium.

# **STAINLESS STEEL & EXOTIC METALS**

#### WHY IS STAINLESS STAINLESS?

Stainless steels achieve 'stainless' characteristics by virtue of their ability to form a tight adherent film of iron-chromium oxide which strongly resists attack by the atmosphere and a wide variety of industrial gases and chemicals. This effect, plus the superior high temperature strength characteristics exhibited by many of these alloys, accounts for their wide use at ordinary and elevated temperatures with a wide choice of mechanical properties and several distinct levels of corrosion resistance.

#### These steels may be subdivided into the following groups:

- 1. Martensitic stainless steels are iron-chromium alloys which are hardenable by heat treatment. Representative of this group are Types 410, 420, 431 and 440C.
- 2. Ferritic stainless steels are iron-chromium alloys which cannot be hardened significantly by heat treatment. Representative of this group are Types 405 and 430.
- 3. Austenitic stainless steels are iron-chromium-nickel and iron-chromium-manganese-nickel alloys which are hardenable by cold working. Representative of this group are Types 201, 304, and 316.
- 4. Precipitation hardening stainless steels are iron-chromiumnickel alloys with additional elements which are hardenable by solution treating and aging.

Alloys in the first two groups are magnetic in all conditions; those in the third group are slightly magnetic in the cold worked condition, but non-magnetic in the annealed condition in which they are most often used. Alloys in the fourth group are magnetic in the precipitation hardened condition.

NOTE: The Fastener Industry is now involved in the process of changing the head markings on stainless steel bolts to correspond to the ASTM specification. Please refer to the chart at the bottom of the page.



"There are few, if any, jobs in which ability alone is sufficient. Needed, also, are loyalty, sincerity, enthusiasm and team play." WILLIAM B. GIVEN, JR.

# THE BOLT SUPPLY HOUSE LTD.

#### **MATERIALS AVAILABLE**

#### **18.8 Stainless Steel**

This is the most popular type of stainless used in the production of fasteners. Its composition is approximately 18% Chromium and 8% Nickel, thus the name 18.8. Several grades of stainless are included in this classification including 302, 303, 304 and 305. These all have good strength and corrosion resistance.

#### 316 Stainless Steel

This is more corrosion resistant than 18.8, but also more expensive. It is composed of approximately 18% Chromium and 12% Nickel with the addition of 2% to 4% Molybdenum. It also maintains its strength at higher temperatures than 18.8.

#### 410 Stainless Steel

It has approximately 12% Chromium with no Nickel. It is not very corrosion resistant and is magnetic, but it can be heat treated to become harder.

#### Alloy 20

This alloy has approximately 20% Chromium and 34% Nickel plus 3% to 4% Molybdenum. It is very corrosion resistant and is especially popular when in contact with sulfuric acid.

#### Brass

This metal is approximately 65% Copper and 35% Zinc. It offers a good combination of strength, corrosion resistance and workability.

#### Nickel Copper 400

This alloy is approximately 70% Nickel and 30% Copper. It has excellent strength and corrosion resistance and is used in salt water marine and other chemical environments.

#### Titanium

This has a very high strength to weight ratio, as well as good corrosion resistance.

#### Inconel

Registered Trademark of Inco Ltd. Composed of approximately 77% Nickel and 15% Chromium. It offers superior strength and good corrosion at high temperatures.

#### Silicon Bronze

It is composed of approximately 96% Copper, 3% Silicon and 1% Manganese. It is more corrosion resistant and tougher than brass. It is widely used in the electrical industry.

> **316 STAINLESS STEEL HEX HEAD CAP SCREWS**

# **18.8 STAINLESS STEEL HEX HEAD CAP SCREWS** UNC – Unified National Coarse Thread **UNC – Unified National Coarse Thread** Present Head Markings New Head Markings 5/8" Dia. 3/4 - 1" Dia All Diameters 1/4" - 5/8" Dia.

# **EXAMPLES OF HEAD MARKING CHANGES**

316 Present Head Markings New Head Markings 5/8" Dia. 3/4 - 1" Dia All Diameters 1/4" - 5/8" Dia.

www.boltsupply.com 14

# STAINLESS STEEL & EXOTIC METALS

|               |                             | Max.               | Max.              | Max.                   | Max.                      |                  | Max.                       |             | Other                 |                                                                 |                                        | Approx.                 |
|---------------|-----------------------------|--------------------|-------------------|------------------------|---------------------------|------------------|----------------------------|-------------|-----------------------|-----------------------------------------------------------------|----------------------------------------|-------------------------|
| Chromium      | Nickel                      | Carbon             | Mangan.           | Phosph.                | Sulphur                   | Molybd.          | Silicon                    | Copper      | Elements              | Tensile                                                         | Yield                                  | Hardness                |
| 300 SERIES    | AUSTENIT                    | IC STAINL          | ESS: Accou        | unts for 86            | %-90% of                  | stainless f      | asteners; b                | est corros  | ion resistance of s   | tainless alloys; non-magnetic                                   | before cold working; lov               | w heat                  |
| conductivity  | ; good strei<br>factonore m | ngth at hig        | her tempe         | ratures; not           | hardenab                  | le by heat t     | treatment.<br>In and viole | lensile and | l yield will increase | e sharply in austenitic fastene<br>ly on how fasteners are made | ers made by cold forming               | g but may<br>d for cold |
| forming suc   | h as 302HC                  | 304 and            | 316 may           | have much              | y, ine rang<br>higher str | enoth than       | other grad                 | les         | and depends large     | iy off flow fasteriers are findue                               | . Grades commonly use                  |                         |
| 18/8          | Most com                    | mon desig          | nation for        | non-magne              | tic stainle               | ss fastener      | s; encomp                  | asses 30 to | o 40 various mixtu    | res of 301, 302, 303, 304, 30                                   | 05 and XM7.                            |                         |
| 17-20%        | 8-13%                       | .08%               | 2%                | .2%                    | .03-15%                   |                  | 1%                         | 0-4%        |                       | 80,000-150,000                                                  | 40,000 min.                            | B85-95                  |
| Usually       | Usually                     | Usually            |                   | Usually                | Usually                   |                  |                            | Usually     |                       | usual range.                                                    | After cold work:                       |                         |
| 17-19%        | 8-10.5%                     | .03-05%            |                   | .045%                  | .03%                      |                  |                            | 2%-3%       |                       | After cold work:                                                | 80,000-90,000                          |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 100,000-125,000                                                 | typical 1/4-5/8 dia.;                  |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 1/4-5/8 dia.:                                                   | typical 3/4                            |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 100,000 typical for                                             | and over dia.                          |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 3/4-1" dia.;                                                    |                                        |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 80,000-90,000 typical                                           |                                        |                         |
| 204           | Mastas                      | lan atalala        |                   |                        |                           |                  |                            | ()          |                       | over 1" dia.                                                    |                                        |                         |
| 304<br>18-20% | NOST POPL                   | nar stainie        | ss for nex        | nead cap so            | crews; als                | o frequenti      | y used for                 | nat wasner  | S.                    | 85 000-150 000                                                  | 40.000 min                             | B85-05                  |
| 10-2070       | 0-10.370                    | .00 /0             | 2 /0              | .4370                  | .00 /0                    |                  | 170                        |             |                       | range.                                                          | After cold work:                       | 000-00                  |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | After cold work:                                                | 90,000 typical for                     |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 125,000 typical for                                             | 1/4-5/8 dia.;                          |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 1/4-5/8 dia.;                                                   | 50,000-70,000 typical                  |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 100,000 typical for                                             | for 3/4 and over dia.                  |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 0/4-1 UIA.;<br>90 000 typical above 1" dia                      |                                        |                         |
| 304L          | Low carbo                   | n increase         | s corrosio        | n resistance           | and weld                  | ling capacit     | ty.                        | I           | 1                     |                                                                 | I                                      |                         |
| 18-20%        | 8-12%                       | .03%               | 2%                | .045%                  | .03%                      |                  | 1%                         |             |                       | Slightly lower than 304 due                                     | to lower carbon content                |                         |
| 305           | High nicke                  | l content l        | owers wor         | k hardening            | during se                 | evere cold t     | forming an                 | d keeps pa  | rts non-magnetic.     | 1                                                               | 1                                      |                         |
| 17-19%        | 10.5-13%                    | .12%               | 2%                | .045%                  | .03%                      |                  | 1%                         |             |                       | 90,000-125,000                                                  | 40,000 min.                            |                         |
| 216           | Addition of                 | f molyhday         |                   |                        | on registe                | noo to oblo      | rido and o                 | ulfidoo     |                       | Typical: 100,000                                                | Typical: 50,000-70,000                 |                         |
| 16-18%        | 10-14%                      |                    | 2%                | 045%                   | 0111051518                | 2-3%             | 1%                         |             | 1                     | 85 000-140 000 usual                                            | 40 000 min                             | B85-95                  |
|               |                             |                    | 2,0               | 1010/0                 |                           |                  |                            |             |                       | range. After cold work:                                         | After cold work:                       |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 120,000 typical for                                             | 80,000-90,000 typical                  |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 1/4-5/8 dia.;                                                   | for 1/4-5/8 dia.;                      |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 95,000 typical for                                              | 50,000-70,000 typical                  |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       | 3/4-1" dla.;                                                    | for 3/4 and over dia.                  |                         |
| 309           | Higher chr                  | ı<br>omium an      | l<br>d nickel ai  | l<br>ve better co      | rrosion re                | I<br>sistance at | high temp                  | eratures (1 | 1900°E)               |                                                                 |                                        | I                       |
| 22-24%        | 12-15%                      | .2%                | 2%                | .045%                  | .03%                      |                  | 1%                         |             | 100,000-120,000       | 60,000-80,000                                                   | B85-95                                 |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       |                                                                 |                                        |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       |                                                                 |                                        |                         |
| 400 SERIES    | MARTENS                     | ITIC STAIN         | LESS: Abo         | out 5% of st           | tainless fa               | steners; m       | agnetic; no                | nickel and  | I high carbon cont    | ent mean the lowest corrosio                                    | n resistance among the                 | different               |
|               | Martensiti                  | c Often a          | mixture o         | f different 4          | 00 materia                | als usually      | with carbo                 | n content i | towards high end o    | of max_giving greater strengt                                   | h hut lowering corrosion               | resistance              |
| 11.5-14%      |                             | .30%               | 1.25%             | .06%                   | .15%                      |                  | 1%                         |             |                       | 180,000-250,000                                                 | 150,000-200,000                        | C34-C45                 |
|               |                             | Usually            | Usually           | Usually                | Usually                   |                  |                            |             |                       | if heat treated                                                 | if heat treated                        |                         |
|               | l                           | .1530%             | 1%                | .04%                   | .03%                      |                  |                            |             |                       |                                                                 |                                        |                         |
| 410           | Higher car                  | bon conter         | nt gives sti      | rength; mos            | t popular                 | of the grac      | tes with 12                | % chrome    | ; used in highly st   | ressed conditions.                                              |                                        | 1004                    |
| 416           | Higher eut                  | .13%<br>fur conten | 1 %<br>t helps ma | 1.04%<br>Chinability P | 1.03%<br>http://ware      | corrosion        | 1%<br>resistance           |             |                       | 1 I OU,UUU HEAT TREATED                                         | 1 100,000 heat treated                 | 034                     |
| 12-14%        | riighti Sul                 | .15%               | 1.25%             | .06%                   | .15%                      | 00103001         | 1%                         |             |                       | 180.000 heat treated                                            | 150.000 heat treated                   | C34                     |
| 420           | Higher car                  | bon gives          | greater str       | ength but lo           | owers cor                 | rosion resis     | stance.                    |             | 1                     |                                                                 | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                         |
| 12-14%        |                             | .30%               | 1%                | .04%                   | .03%                      |                  | 1%                         |             |                       | 250,000 heat treated                                            | 200,000 heat treated                   | C45                     |
|               |                             | Nom.               |                   |                        |                           |                  |                            |             |                       |                                                                 |                                        |                         |
|               |                             | 15% min            |                   |                        |                           |                  |                            |             |                       |                                                                 |                                        |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       |                                                                 |                                        |                         |
| PRECIPITAT    | ION HARDE                   | NED STAI           | NLESS. M          | ONEL. AND              |                           | M                | 1                          | 1           | 1                     | 1                                                               | 1                                      | L                       |
| 630           | Infrequent                  | ly used; hi        | gh corrosi        | on resistant           | ce; strengt               | th and duct      | ility in high              | and low t   | emperatures due t     | o solution annealing and har                                    | dening.                                |                         |
| 15.5-175%     | 3.5%                        | .07%               | 1%                | .04%                   | .03%                      | 1%               |                            | 3-5%        | Columbian and         | 135,000                                                         | 105,000                                | C28                     |
|               |                             |                    |                   |                        |                           |                  |                            |             | Tantalum - 15.4       |                                                                 |                                        |                         |
| Morel 400     | Most                        | monhu              | d nickel e        |                        | or cold f                 | ming             | allant com                 |             | 5%                    | alt water                                                       |                                        |                         |
|               | 63-70%                      | 3%                 | 2%                | pper alloy 1           | 5%                        | inning; exc      |                            | ISION TESIS | 2 5%-Iron             | 80 000-125 000                                                  | 400 000-70 000                         | B70                     |
|               | 00 10 /0                    | .0 /0              | 2 /0              |                        | .0 /0                     |                  |                            |             | .5%-Alum.             | 00,000 120,000                                                  | 400,000 70,000                         | 010                     |
|               |                             |                    |                   |                        |                           |                  |                            |             | .15% Sulf.,           |                                                                 |                                        |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             | remainder Copper      |                                                                 |                                        |                         |
| Aluminum 2    | 2024 Mos                    | st popular         | of aluminu        | im alloys; n           | eeds heat                 | treatment        | for strengt                | h.          |                       |                                                                 |                                        |                         |
| .1%           |                             |                    | .39%              |                        | .5%                       |                  |                            | 3.8-4.9%    | .25% Zinc.            | 60,000 heat treated                                             | 50,000 heat treated                    | B60 heat                |
|               |                             |                    |                   |                        |                           |                  |                            |             | 1.∠-1.ŏ%<br>Magnesium |                                                                 |                                        | rieated                 |
|               |                             |                    |                   |                        |                           |                  |                            |             | remainder Alum        |                                                                 |                                        |                         |
|               |                             |                    |                   |                        |                           |                  |                            |             |                       |                                                                 |                                        |                         |

"PROFESSIONALS SERVING PROFESSIONALS"

www.boltsupply.com 15

TECHNICAL

## **STAINLESS STEEL & EXOTIC METALS**

attra

# THE BOLT SUPPLY HOUSE LTD.

|               |               | Max                                                                | Max          | Max          | Мах              |             | Мах          | [              | Other                  |                           |               | Annrox   |
|---------------|---------------|--------------------------------------------------------------------|--------------|--------------|------------------|-------------|--------------|----------------|------------------------|---------------------------|---------------|----------|
| Chromium      | Nickel        | Carhon                                                             | Mangan       | Phoenh       | Sulnhur          | Molyhd      | Silicon      | Conner         | Flements               | Tensile                   | Vield         | Hardness |
| BRASS and     | BRONZE        | Journou                                                            | mangan.      | т позрп.     | ourprior         | morybu.     | onnoon       | oophei         | Liementa               | Tensite                   | TICIO         | naraness |
| Brass Allov   | 270           | Good col                                                           | d forming    | due to hiah  | conner co        | ntent: also | used for     | milled from    | har nuts               |                           |               |          |
| Diass Alloy   | 210           |                                                                    |              | add to mgn   |                  |             |              | 65%            | 35% 7inc               | 70.000                    | 45.000        | B65      |
| Brass Allov   | 360           | Good machinability due to added lead: good for screw machine parts |              |              |                  |             |              |                |                        |                           |               |          |
| Drado miloy   |               |                                                                    |              | 440 10 444   |                  |             |              | 61.5%          | 3% Lead                | 50.000                    | 30.000        | B55      |
|               |               |                                                                    |              |              |                  |             |              | 01.070         | remainder 7inc         | 00,000                    | 00,000        | 000      |
| Commercia     | I Brass       | Easier to                                                          | cold form    | as conner i  | Content inc      | roscoc. sc  | conner co    | ntent decr     | asses the metal he     | comes stronger and harder |               |          |
| Commercia     | 11 01033      |                                                                    |              |              |                  | 100303, 03  |              | 60-65%         | 35-40% 7inc            |                           | 35.000        | B60      |
|               |               |                                                                    |              |              |                  |             |              | 00-03 /0       | 05-15 Load             | 33,000                    | 33,000        | 000      |
| Bronzo Allo   | w 651         |                                                                    |              |              |                  |             |              |                |                        |                           |               |          |
| DI UNZO ANU   | <u>iy 031</u> | Generally                                                          | 07%          | iek lieau ca | <u>p sciews.</u> |             | 2.0%         | 96.0%          | 05% Lead may           | 70.000-80.000             | 35,000-45,000 | B70-B75  |
|               |               |                                                                    | .07 /0       |              |                  |             | 2.0 /0       | 90.0 /0<br>min | 1.5% Zinc max          | 70,000-00,000             | 33,000-43,000 | 010-013  |
| Propzo Allo   | W 655         | Lload for                                                          | hot forgod   | factonoro    |                  |             |              |                | 1.5 % ZITC TTAX.       | l                         |               | L        |
| DI UIIZE AIIU | 060/          |                                                                    |              | lasteriers.  |                  |             | 2 00/        | 04.99/         | 05% Load max           | 70 000 80 000             | 25 000 45 000 | D70 D75  |
|               | .00 %         |                                                                    | 1.5%         |              |                  |             | 3.0%         | 94.0 %         | 1 5% Zino max          | 10,000-00,000             | 35,000-45,000 | D/U-D/J  |
| Commoraio     | Dronzo        | Addition                                                           | of load hal  | a maahina    | hilita (         |             |              |                | 1.5 % ZITC TTAX.       |                           |               |          |
| commercia     | II Bronze     | Addition                                                           | or lead hei  | os machina   | Dility.          |             | 0.40/        | 04.000/        | 05 00/ 1 and           | 70.000.00.000             | 05 000 45 000 | D70 D75  |
|               |               |                                                                    |              |              |                  |             | 2-4%         | 94-96%         | .058% Lead,            | 70,000-80,000             | 35,000-45,000 | B10-B12  |
|               | <u> </u>      |                                                                    |              |              |                  |             |              | I <u>.</u>     | 05-1.5% ZINC.          |                           |               |          |
| Phosphorus    | S Bronze      | I In Increa                                                        | ases streng  | itn; pnospn  | orus neips       | s against s | tress corro  | sion; excel    | lent cold forming p    | properties.               | 05.000        |          |
|               |               |                                                                    |              | .3%          | l                |             |              | 95%            | 5% Tin                 | 60,000                    | 35,000        | B60      |
| Naval Bron    | ze            | Addition                                                           | of tin gives | better cor   | rosion resi      | stance aga  | iinst salt w | ater.          | 1                      | 1                         | 1             |          |
|               |               |                                                                    |              |              |                  |             |              | 59-62%         | .5-1% Tin,             | 70,000                    | 30,000        | B65      |
|               |               |                                                                    |              |              |                  |             |              |                | 2% Lead                |                           |               |          |
|               |               |                                                                    |              |              |                  |             |              |                | remainder Zinc         |                           |               |          |
|               |               |                                                                    |              |              |                  |             |              |                | 2% Lead remainder Zinc |                           |               |          |

# **TORQUE GUIDE CHART – STAINLESS STEEL**



|           | Clamp | Assembly Torque | Min.    |         |
|-----------|-------|-----------------|---------|---------|
|           | Load  | Dry             | Lub     | Tensile |
| Size      | (lb)  | (ft lb)         | (ft lb) | (lb)    |
| 1/4 - 20  | 1350  | 6               | 5       | 2780    |
| 1/4 - 28  | 1500  | 7               | 5       | 3020    |
| 5/16 - 18 | 2200  | 12              | 9       | 4400    |
| 5/16 - 24 | 2400  | 13              | 10      | 4700    |
| 3/8 - 16  | 3200  | 20              | 15      | 6500    |
| 3/8 - 24  | 3700  | 23              | 17      | 9000    |
| 1/2 - 13  | 5900  | 50              | 37      | 11900   |
| 1/2 - 20  | 6700  | 56              | 42      | 12800   |
| 5/8 - 11  | 9500  | 100             | 75      | 18800   |
| 5/8 - 18  | 10800 | 113             | 84      | 20400   |
| 3/4 - 10  | 14100 | 177             | 132     | 27600   |
| 3/4 - 16  | 15700 | 197             | 148     | 29600   |
| 7/8 - 9   | 11700 | 232             | 174     | 37900   |
| 1 - 8     | 15300 | 256             | 192     | 49700   |
| 1-1/8 - 7 | 19300 | 363             | 272     | 62700   |
| 1-1/4 - 7 | 24500 | 512             | 384     | 78800   |
| 1-3/8 - 6 | 29200 | 671             | 503     | 94400   |
| 1-1/2 - 6 | 35600 | 891             | 668     | 114000  |

### 316 STAINLESS STEEL HEX HEAD CAP SCREWS UNC – Unified National Coarse Thread





|           | Clamp | Assembly Torque | Min.    |         |
|-----------|-------|-----------------|---------|---------|
|           | Load  | Dry             | Lub     | Tensile |
| Size      | (lb)  | (ft lb)         | (ft lb) | (lb)    |
| 1/4 - 20  | 2100  | 9               | 7       | 4600    |
| 1/4 - 28  | 2400  | 10              | 7       | 5000    |
| 5/16 - 18 | 3400  | 18              | 13      | 7400    |
| 5/16 - 24 | 3800  | 20              | 15      | 7900    |
| 3/8 - 16  | 5100  | 32              | 24      | 10900   |
| 3/8 - 24  | 5700  | 36              | 27      | 15000   |
| 1/2 - 13  | 9350  | 78              | 58      | 19800   |
| 1/2 - 20  | 10550 | 88              | 66      | 21400   |
| 5/8 - 11  | 14950 | 116             | 75      | 31400   |
| 5/8 - 18  | 16850 | 136             | 80      | 34000   |
| 3/4 - 10  | 20300 | 178             | 132     | 42300   |
| 3/4 - 16  | 22670 | 208             | 152     | 45400   |
| 7/8 - 9   | 16850 | 246             | 213     | 58100   |
| 1 - 8     | 22900 | 368             | 290     | 69500   |
| 1-1/8 - 7 | 25400 | 386             | 411     | 87800   |
| 1-1/4 - 7 | 32200 | 548             | 480     | 110300  |
| 1-3/8 - 6 | 38400 | 629             | 629     | 125900  |
| 1-1/2 - 6 | 46700 | 835             | 835     | 152000  |

# **CORROSION GUIDE**

This guide details the effects of various corrosive environments on popularly used fastener materials.

| Stainless Steel                          |                     |                     |                     | _                   |                     |                     |                    |                    |                    |
|------------------------------------------|---------------------|---------------------|---------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|
|                                          | 18/8, 302           |                     |                     | Brass and           |                     |                     |                    |                    |                    |
| Corrosive                                | 303, 304            |                     | 410, 416            | Naval               | Silicon             |                     | Copper             |                    |                    |
| Medium                                   | 305                 | 316                 | 430                 | Bronze              | Bronze              | Copper              | (Monel)            | Aluminum           | Nylon              |
| Acetate Solvents, Crude                  | Excel               | Excel               | Good                | Fair                | Good                | Good                | Good               | Excel              | Good               |
| Acetate Solvents, Pure                   | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Acetate Acid, Crude                      | Good                | Excel               | Poor <sup>2</sup>   | Fair <sup>1</sup>   | Good                | Good                | Good               | Good               | Poor               |
| Acetate Acid (Pure)                      | Good                | Excel               | Poor <sup>2</sup>   | Fair <sup>1</sup>   | Good                | Good                | Good               | Excel              | Poor               |
| Acetic Acid Vapors                       | Good                | Excel               | Poor                | Poor                | Good                | Good                | Fair               | Good               | Poor               |
| Acetic Anhydride                         | Good                | Excel               | Poor                | Poor                | Good                | Good                | Good               | Excel              | Poor               |
| Acetone                                  | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Acetylene                                | Excel               | Excel               | Excel               | 3                   | Poor                | Poor                | Good               | Excel              |                    |
| Alcohols                                 | Excel               | Excel               | Excel               | Good                | Excel               | Excel               | Excel              | Good               | Good               |
| Aluminum Sulfate                         | Fair                | Good                | Poor                | Fair <sup>1</sup>   | Good                | Good                | Good               | Fair               | Poor               |
| Alums                                    | Fair                | Good                | Poor                | Fair <sup>1</sup>   | Good                | Good                | Good               | Excel              | Fair               |
| Ammonia Gas <sup>4</sup>                 | Excel               | Excel               | Excel               | Poor <sup>56</sup>  | 6                   | 6                   | 6                  | Excel              | Good <sup>36</sup> |
| Ammonium Chloride                        | Fair                | Excel               | Fair                | Fair <sup>1</sup>   | Good                | Good                | Excel              | Poor               | Fair               |
| Ammonium Hydroxide                       | Excel               | Excel               | Excel               | Poor                | Poor                | Poor                | Fair Good          | Good <sup>36</sup> |                    |
| Ammonium Nitrate                         | Excel               | Excel               | Excel               | Poor                | Fair                | Fair                | Fair               | Excel              | Fair               |
| Ammonium Phosphate                       |                     |                     |                     |                     |                     |                     |                    |                    |                    |
| (Ammoniacal)                             | Excel               | Excel               | Excel               | Poor                | Poor                | Poor                | Good               | Poor               | Good               |
| Ammonium Phosphate                       |                     |                     |                     |                     |                     |                     |                    |                    |                    |
| (Neutral)                                | Excel               | Excel               | Good                | Fair                | Fair                | Fair                | Good               | Fair               | Excel              |
| Ammonium Phosphate (Acid)                | Good                | Excel               | Fair                | Fair <sup>1</sup>   | Fair                | Fair                | Good               | Fair               | Fair               |
| Ammonium Sulfate                         | Excel               | Excel               | Good                | Fair <sup>1</sup>   | Fair                | Fair                | Good               | Good <sup>35</sup> | Fair               |
| Asphalt                                  | Excel               | Excel               | Good                | Good                | Excel               | Excel               | Excel              | Excel              | Excel              |
| Beer                                     | Excel               | Excel               | 7                   | Good                | Good                | Good                | Excel              | Excel              | Excel              |
| Beet Sugar Liquors                       | Excel               | Excel               | Good                | Good                | Excel               | Excel               | Excel              | Excel              | Good               |
| Benzene or Benzol <sup>8</sup>           | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Benzine <sup>8</sup>                     | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Borax                                    | Excel               | Excel               | Excel               | Good                | Good                | Good                | Excel              | Good               | Good               |
| Boric Acid                               | Good                | Excel               | Fair                | Fair <sup>1</sup>   | Good                | Good                | Excel              | Excel              | Good               |
| Butane, Butylene, Butadiene <sup>9</sup> | Excel <sup>10</sup> | Excel <sup>10</sup> | Excel <sup>10</sup> | Excel <sup>34</sup> | Excel <sup>34</sup> | Excel <sup>34</sup> | Excel              | Excel              | Excel              |
| Calcium Bisulfite                        | Good                | Excel               | Poor                | Poor                | Good                | Good                | Poor               | Poor               | Good               |
| Calcium Hypochlorite                     | Fair                | Good                | Poor                | Fair                | Fair                | Fair                | Fair               | Poor               | Fair               |
| Cane Sugar Liquors                       | Excel               | Excel               | Good                | Good                | Excel               | Excel               | Excel              | Excel              | Good               |
| Carbon Dioxide (Dry)                     | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Carbon Dioxide                           |                     |                     |                     |                     |                     |                     |                    |                    |                    |
| (Wet and Aqueous)                        | Excel               | Excel               | Excel <sup>11</sup> | Fair <sup>11</sup>  | Good <sup>11</sup>  | Good <sup>11</sup>  | Good <sup>11</sup> | Excel              | Excel              |
| Carbon Disulfide                         | Excel               | Excel               | Good                | Fair                | Poor                | Poor                | Fair               | Excel              | Excel              |
| Carbon Tetrachloride <sup>12</sup>       | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Good               | Excel              |
| Chlorine (Dry)                           | Good                | Good                | Good                | Good                | Good                | Good                | Excel              | Poor               | Poor               |
| Chlorine (Wet)                           | Poor                | Fair                | Poor                | Poor                | Fair                | Fair                | Fair               | Poor               | Poor               |
| Chromic Acid                             | Good                | Excel               | Fair                | Poor                | Poor                | Poor                | Fair               | Poor               | Poor               |
| Citric Acid                              | Good                | Excel               | Fair                | Fair <sup>1</sup>   | Good                | Good                | Good               | Good               | Good               |
| Coke Oven Gas                            | Excel               | Excel               | Excel               | Fair                | Fair                | Fair                | Good               | Good               | Fair               |
| Copper Sulfate                           | Excel               | Excel               | Excel               | Poor                | Fair                | Fair                | Fair               | Poor               | Fair               |
| Core Oils                                | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Cottonseed Oil                           | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Creosote                                 | Excel               | Excel               | Excel               | Fair                | Good                | Good                | Excel              | Good               |                    |
| Ethers                                   | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Ethylene Glycol                          | Excel               | Excel               | Excel               | Good                | Excel               | Excel               | Excel              | Good               | Good               |
| Ferric Chloride                          | Poor                | Poor                | Poor                | Poor                | Poor                | Poor                | Poor               | Poor               | Poor               |
| Ferric Sulfate                           | Excel               | Excel               | Excel               | Poor                | Fair                | Fair                | Fair               | Good               | Poor               |
| Formaldehyde                             | Excel               | Excel               | Excel               | Good                | Good                | Good                | Excel              | Good               | Good               |
| Formic Acid                              | Good                | Excel               | Poor                | Fair <sup>1</sup>   | Good                | Good                | Good               | Poor               | Poor               |
| Freon                                    | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Good               | Excel              |
| Furfural                                 | Excel               | Excel               | Excel               | Good                | Good                | Good                | Excel              | Excel              | Excel              |
| Gasoline (Sour)                          | Excel               | Excel               | Fair                | Fair                | Poor                | Poor                | Poor               | Poor               | Excel              |
| Gasoline (Refined)                       | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Gelatin                                  | Excel               | Excel               | Fair <sup>13</sup>  | Fair <sup>13</sup>  | Excel <sup>13</sup> | Excel <sup>13</sup> | Excel              | Excel              | Excel              |
| Glucose                                  | Excel               | Excel               | Excel               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              |
| Glue                                     | Excel               | Excel               | Excel               | Fair                | Excel               | Excel               | Excel              | Fair               | Excel              |
| Glycerine or Glycerol                    | Excel               | Excel               | Excel               | Good                | Excel               | Excel               | Excel              | Excel              | Good               |

www.boltsupply.com <sup>17</sup>

# MATERIALS - CORROSION GUIDE

|                                   |                     | Stainless Ste       | el                  |                    |                    |                    |                    |          |                    |
|-----------------------------------|---------------------|---------------------|---------------------|--------------------|--------------------|--------------------|--------------------|----------|--------------------|
|                                   | 18/8, 302           |                     |                     | Brass and          |                    |                    |                    |          |                    |
| Corrosive                         | 303, 304            |                     | 410, 416            | Naval              | Silicon            |                    | Copper             |          |                    |
| Medium                            | 305                 | 316                 | 430                 | Bronze             | Bronze             | Copper             | (Monel)            | Aluminum | Nylon              |
| Hydrochloric Acid                 | Poor                | Poor                | Poor                | Poor               | Fair <sup>14</sup> | Fair <sup>14</sup> | Fair <sup>14</sup> | Poor     | Poor               |
| Hydrocyanic Acid                  |                     |                     |                     |                    |                    |                    |                    |          |                    |
| (Hydrogen Cyanide)                | Excel               | Excel               | Fair                | Poor               | Poor               | Poor               | Good               | Excel    | Excel              |
| Hydrofluoric Acid                 | Poor                | Poor                | Poor                | Poor               | Fair               | Fair               | Excel              | Poor     | Poor               |
| Hydrogen Fluoride                 | Good                | Good                | Fair                | Fair               | Good               | Good               | Excel              | Poor     | Poor               |
| Hydrogen <sup>9</sup>             | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              | Excel              | Excel    | Excel              |
| Hydrogen Peroxide                 | Excel               | Excel               | Excel               | Poor               | Fair               | Fair               | Good               | Good     | Fair               |
| Hydrogen Sulfide (Dry)            | Excel               | Excel               | Good                | Fair <sup>6</sup>  | Poor <sup>6</sup>  | Poor <sup>6</sup>  | Fair <sup>6</sup>  | Excel    | Good <sup>37</sup> |
| Hydrogen Sulfide                  |                     |                     |                     |                    |                    |                    |                    |          |                    |
| (Wet and Aqueous)                 | Good                | Excel               | Fair <sup>15</sup>  | Fair               | Poor               | Poor               | Fair               | Excel    | Good <sup>37</sup> |
| Lacquers and Lacquer Solvents     | Excel               | Excel               | Excel               | Fair               | Excel              | Excel              | Excel              | Excel    | Excel              |
| Lime-Sulfur                       | Excel               | Excel               | Good                | Poor               | Fair               | Fair               | Good               | Poor     | Good               |
| Magnesium Chloride                | Good                | Excel               | Fair                | Fair               | Good               | Good               | Excel              | Poor     | Excel              |
| Magnesium Hydroxide               | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Fair     | Good               |
| Magnesium Sulfate                 | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Good     | Excel              |
| Mercuric Chloride                 | Poor                | Fair <sup>16</sup>  | Poor                | Poor               | Poor               | Poor               | Poor               | Poor     |                    |
| Mercury                           | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Poor     | Excel              |
| Milk                              | Excel               | Excel               | Good                | Fair               | Fair               | Fair               | Fair               | Excel    | Excel              |
| Molasses                          | Excel               | Excel               | Good                | Good               | Excel              | Excel              | Excel              | Excel    | Excel              |
| Natural Gas                       | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Excel    | Excel              |
| Nickel Chloride <sup>17</sup>     | Fair                | Good                | Poor                | Poor               | Fair               | Fair               | Good               | Poor     | Poor               |
| Nickel Sulfate <sup>17</sup>      | Good                | Excel               | Fair                | Fair               | Good               | Good               | Excel              | Poor     | Poor               |
| Nitric Acid                       | Good                | Good                | Good <sup>18</sup>  | Poor               | Poor               | Poor               | Poor               | Fair     | Poor               |
| Oleic Acid                        | Good <sup>20</sup>  | Excel               | Good <sup>20</sup>  | Fair <sup>19</sup> | Good <sup>24</sup> | Good <sup>24</sup> | Excel              | Excel    | Excel              |
| Oxalic Acid                       | Good                | Excel               | Fair                | Fair               | Fair               | Fair               | Excel              | Poor     | Poor               |
| Oxygen <sup>9</sup>               | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              | Excel              | Excel    | Good               |
| Palmitic Acid                     | Good <sup>20</sup>  | Excel               | Good <sup>20</sup>  | Fair <sup>19</sup> | Good <sup>24</sup> | Good <sup>24</sup> | Excel              | Excel    | Excel              |
| Petroleum Oils (Sour)             | Excel               | Excel               | Fair                | Fair               | Poor               | Poor               | Poor               | Poor     | Excel              |
| Petroleum Oils (Refined)          | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              | Excel              | Excel    | Excel              |
| Phosphoric Acid 25%               | Fair <sup>23</sup>  | Excel               | Poor                | Poor               | Good <sup>21</sup> | Good <sup>21</sup> | Good <sup>22</sup> | Poor     | Poor               |
| Phosphoric Acid 25%, 50%          | Poor                | Good                | Poor                | Poor               | Good <sup>21</sup> | Good <sup>21</sup> | Good <sup>22</sup> | Poor     | Poor               |
| Phosphoric Acid 50%, 85%          | Poor                | Good                | Poor                | Poor               | Good <sup>21</sup> | Good <sup>21</sup> | Good <sup>22</sup> | Excel    | Excel              |
| Picric Acid                       | Excel               | Excel               | Good                | Poor               | Poor               | Poor               | Poor               | Fair     | Poor               |
| Potassium Chloride                | Good                | Excel               | Fair                | Fair               | Good               | Good               | Excel              | Poor     | Excel              |
| Potassium Hydroxide               | Excel               | Excel               | Excel               | Poor               | Fair               | Fair               | Excel              | Poor     | Good <sup>38</sup> |
| Potassium Sulfate                 | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Excel    | Excel              |
| Propane <sup>9</sup>              | Excel <sup>10</sup> | Excel <sup>10</sup> | Excel <sup>10</sup> | Excel              | Excel              | Excel              | Excel              | Excel    | Excel              |
| Rosin (Dark)                      | Excel               | Excel               | Excel               | Good               | Good               | Good               | Excel              | Excel    | Excel              |
| Rosin (Light)                     | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Good     | Excel              |
| Shellac                           | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Excel    | Excel              |
| Soda Ash (Sodium Carbonate)       | Excel               | Excel               | Excel               | Good               | Good               | Excel              | Excel              | Poor     | Excel              |
| Sodium Bicarbonate                | Excel               | Excel               | Excel               | Excel              | Excel              | Excel              | Excel              | Good     | Excel              |
| Sodium Bisulfate                  | Poor                | Excel               | Poor                | Fair <sup>1</sup>  | Good               | Good               | Excel              | Fair     | Fair               |
| Sodium Chloride                   | Good                | Excel               | Fair                | Fair               | Good               | Good               | Excel              | Good     | Excel              |
| Sodium Cyanide                    | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Poor     | Good               |
| Sodium Hydroxide                  | Excel               | Excel               | Excel               | Poor               | Fair               | Fair               | Excel              | Poor     | Good <sup>38</sup> |
| Sodium Hypochlorite               | Fair                | Excel               | Poor                | Excel              | Fair               | Fair               | Fair               | Poor     | Fair               |
| Sodium Metaphosphate              | Excel               | Excel               | Good                | Fair               | Good               | Good               | Excel              | Fair     | Excel              |
| Sodium Nitrate                    | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Excel    | Excel              |
| Sodium Perborate                  | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Fair     |                    |
| Sodium Peroxide                   | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Fair     | Fair               |
| Sodium Phosphate (Alkaline)       | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Poor     | Good               |
| Sodium Phosphate (Neutral)        | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Poor     | Excel              |
| Sodium Phosphate (Acid)           | Good                | Excel               | Poor                | Fair <sup>1</sup>  | Good               | Good               | Excel              | Poor     | Fair               |
| Sodium Silicate                   | Excel               | Excel               | Excel               | Fair               | Good               | Good               | Excel              | Good     | Good               |
| Sodium Sulfate                    | Excel               | Excel               | Excel               | Good               | Excel              | Excel              | Excel              | Excel    | Excel              |
| Sodium Sulfide                    | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Poor     | Good               |
| Sodium Thiosulfate (Hypo)         | Excel               | Excel               | Excel               | Poor               | Poor               | Poor               | Good               | Excel    | Good <sup>39</sup> |
| Sludge Acid                       | Poor                | Fair                | Poor                | Poor               | Good               | Good               | Good               | Poor     |                    |
| Stearic Acid                      | Good <sup>20</sup>  | Excel               | Good <sup>20</sup>  | Fair <sup>19</sup> | Good <sup>24</sup> | Good <sup>24</sup> | Excel              | Excel    | Excel              |
| Sulfur                            | Excel               | Excel               | Excel               | Fair               | Fair               | Fair               | Fair               | Excel    | Good               |
| Sulfur Chloride                   | Fair                | Good                | Poor                | Poor               | Poor               | Poor               | Good               | Poor     | Poor               |
| Sulfur Dioxide (Drv) <sup>9</sup> | Excel               | Excel               | Excel               | Fair               | Excel              | Excel              | Excel              | Good     | Good               |
| Sulfur Dioxide (Wet)              | Good                | Excel               | Poor                | Poor               | Good               | Good               | Poor               | Fair     | Fair               |

<sup>18</sup> www.boltsupply.com

| MATERIALS | - CO | RROS | ION C | iUI   | DE |
|-----------|------|------|-------|-------|----|
|           |      | 1123 | 10 6  | 0.000 |    |

|                                 | Stainless          | Steel              |                    |                    |                    |                    |                    |          |                    |
|---------------------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|--------------------|----------|--------------------|
|                                 | 18/8, 302          |                    |                    | Brass and          | l                  |                    |                    |          |                    |
| Corrosive                       | 303, 304           |                    | 410, 416           | Naval              | Silicon            |                    | Copper             |          |                    |
| Medium                          | 305                | 316                | 430                | Bronze             | Bronze             | Copper             | (Monel)            | Aluminum | Nylon              |
| Sulfuric Acid 10%               | Poor               | Good <sup>25</sup> | Poor               | Poor               | Good <sup>25</sup> | Good               | Good <sup>25</sup> | Poor     | Poor               |
| Sulfuric Acid 10%, 75%          | Poor               | Poor               | Poor               | Poor               | Fair               | Fair               | Good               | Poor     | Poor               |
| Sulfuric Acid 75%, 95%          | Fair <sup>27</sup> | Good <sup>27</sup> | Fair <sup>27</sup> | Poor               | Fair <sup>26</sup> | Fair <sup>26</sup> | Fair <sup>26</sup> | Poor     | Poor               |
| Sulfuric Acid 95%               | Good               | Good               | Good               | Poor               | Fair               | Poor               | Poor               | Fair     | Poor               |
| Sulfurous Acid                  | Fair               | Good               | Poor               | Poor               | Good               | Good               | Poor               | Poor     | Fair               |
| Tar                             | Excel              | Excel              | Good               | Good               | Excel              | Excel              | Excel              | Excel    | Excel              |
| Tartaric Acid                   | Good               | Excel              | Fair               | Fair <sup>1</sup>  | Good               | Good               | Good               | Good     | Fair               |
| Toluene or Toluol <sup>8</sup>  | Excel              | Excel    | Excel              |
| Trichloroethylene <sup>12</sup> | Excel              | Excel    | Good               |
| Turpentine                      | Excel              | Excel              | Good <sup>28</sup> | Fair <sup>28</sup> | Excel              | Excel              | Excel              | Excel    | Excel              |
| Varnish <sup>29</sup>           | Excel              | Excel              | Excel              | Good               | Good               | Good               | Excel              | Excel    | Excel              |
| Vegetable Oils <sup>29</sup>    | Excel              | Excel              | Excel              | Good               | Good               | Good               | Excel              | Excel    | Excel              |
| Vinegar <sup>25</sup>           | Good               | Excel              | Fair               | Poor               | Good               | Good               | Good               | Excel    | Fair               |
| Water (Acid Mine Water)         | 31                 | 31                 | 31                 | Poor               | 30                 | 30                 | 30                 | Fair     | Good               |
| Water (Fresh)                   | Excel              | Excel              | Excel              | Fair <sup>32</sup> | Good               | Good               | Excel              | Excel    | Excel              |
| Water (Salt)                    | Good <sup>33</sup> | Fair <sup>33</sup> | Fair <sup>32</sup> | Good               | Good               | Excel              | Good               | Excel    |                    |
| Whiskey                         | Excel              | Excel              | Fair               | Good               | Good               | Good               | Good               | Fair     | Excel              |
| Wines                           | Excel              | Excel              | Fair               | Good               | Good               | Good               | Good               | Fair     | Excel              |
| Xylene or Xylol <sup>8</sup>    | Excel              | Excel    | Excel              |
| Zinc Chloride                   | Poor               | Good               | Poor               | Poor               | Good               | Good               | Excel              | Poor     | Good               |
| Zinc Sulfate                    | Good               | Excel              | Fair               | Fair               | Good               | Good               | Excel              | Good     | Good <sup>39</sup> |

#### Notes:

- 1. Subject to dezincification and/or stress corrosion; especially at elevated temperatures and with concentrated solutions.
- 2. May be useful with cold dilute acid.
- 3. Alloys containing up to 60 percent copper acceptable; high copper alloys not acceptable.
- Temperature assumed to be below that at which gas cracks and liberates 4. nascent nitrogen.
- Subject to stress corrosion with low concentrations. 5
- 6. Apparently resistant to dry gas at ordinary temperatures; attacked rapidly by moist gas and by hot gas.
- Not recommended for use with beverage grade. 7.
- 8. Chemicals used for treating in manufacture assumed to be absent.
- 9. Temperature assumed to be no higher than that normally encountered in compression, storage, and distribution.
- 10. Useful at elevated temperatures.
- 11. Not recommended for use with carbonated beverages.
- 12. Water assumed to be absent.
- 13. Not recommended for use with edible grades.
- 14. Only with dilute or unaerated solutions.
- 15. Subject to stress corrosion by moist gas; and to severe general corrosion by saturated acqueous solution.
- 16. Subject to stress corrosion.
- 17. None of these materials recommended for use with nickel plating solutions.
- 18. Higher chromium alloys (over 18 percent) preferred.
- 19. Not recommended for temperatures over 212°F (100°C).
- 20. Alloys with less than 18 percent Cr. not recommended for temperatures over 212°F (100°C). Others not recommended for temperatures over 392°F (200°C).

21. Up to 140°F (60°C).

- 22. Up to 194°F (90°C).
- 23. At room temperature.
- 24. Not recommended for temperatures over 392°F (200°C).
- 25. Non-ferrous alloys preferred when unaerated and at temperatures above normal. Stainless Steel best when aerated and at normal to moderate temperatures.
- 26. With cold acid only.
- 27. In the absence of exposure to moist air.
- 28. Crude produce may contain acids which corrode these materials. 29.
- Some of these ratings may not apply when handling light colored products at elevated temperatures of 392°F (200°C). 30. Good with water containing no oxidizing salts; fair with water containing
- oxidizing salts. 31. Excellent with water containing oxidizing salts; not good with water containing no oxidizing salts.
- 32. Subject to dezincification with hot and/or aerated waters.
- 33. Subject to pitting attack.
- 34. Copper may act as a catalyst for undesirable reactions.
- 35. Free sulphuric acid absent.
- 36. Good at concentrations under 10 percent and below 100°F (38°C).
- 37. Suitable for limited service at concentrations under 50 percent and below 100°F (38°C).
- 38. Good only at concentrations under 10 percent and below 100°F (38°C).
- 39. Good only at concentrations under 20 percent and below 100°F (38°C).

"Anyone can hold the helm when the sea is calm."

**PUBLILIUS SYRUS** 

www.boltsupply.com "PROFESSIONALS SERVING PROFESSIONALS"

19

#### METRIC/ISO/DIN

#### **METRIC THREADS**

Metric threads evolved similarly to the inch thread series. The current ISO metric screw thread system includes a coarse series, fine series and a number of constant pitch thread series.

The ISO metric coarse thread series is uniquely positioned, in terms of its thread pitches. It is located approximately half way between Unified coarse and Unified fine. For a given diameter, metric coarse threads are finer than Unified coarse but coarser than Unified fine. The metric coarse thread has certain technical advantages over either of the two Unified inch thread series.

ISO metric fine thread series has much finer thread pitches than those of the Unified fine series. Use of the metric fine series for commercial metric fastener applications is not recommended.

#### **Metric External Fastener Strength Grades**

The metric fastener strength grades are called 'property classes.' This term originated in ISO standards and were continued into ASTM and SAE specifications. The ISO 'property class' system for externally threaded metric fasteners is specified in ISO 898/1.

Property class designations, as found on the head of a metric bolt, are numerals indicating the following information:

• The numeral or numerals preceding the first decimal point approximate 1/100th of the specified minimum tensile strength in megapascals (MPa).

#### **Metric Grades**

 The numeral following the first decimal point approximates 1/10th of the ratio (expressed as a percentage), between the minimum yield strength and the minimum tensile strength. The yield strength is always a percentage of the tensile strength. Yield strength is where thread deformation begins, and this value is always less than the bolt's tensile strength.

#### Metric Strength Grade System Examples

A class 4.6 steel metric bolt has a specified minimum tensile strength of 400 MPa (4 x 100) and a specified minimum yield strength of 240 MPa (0.6 x 400). The numbers 4 and .6 make up the designation, with the .6 being the ratio of 240 MPa minimum yield strength to 400 MPa minimum tensile strength.

Not all metric designations give exact tensile and yield values as earlier discussed. Each gives reasonable approximates.

Note: It is a mandatory regulation in SAE and ASTM standards that inch series fasteners of the mediumcarbon and alloy steel strength grades and metric fasteners of all property classes be marked for grade identification. The only exceptions are slotted and recessed head screws and bolts smaller than 5mm. Also of major importance is that these same standards require that all steel fasteners be marked to identify the manufacturer.

# METRIC/IMPERIAL COMPARATIVE CHART FOR DIAMETERS

1 inch = 25.4 mm

| 1 | mm | = | 0.04 |
|---|----|---|------|
|   |    |   |      |

| Metric Diameter | Decimal (in) | Nearest Diameter (in) | Decimal (in) |
|-----------------|--------------|-----------------------|--------------|
| M2              | (0.079)      | #2                    | (0.086)      |
| M2.5            | (0.098)      | #3                    | (0.999)      |
| M3              | (0.118)      | #5                    | (0.125)      |
| M3.5            | (0.138)      | #6                    | (0.138)      |
| M4              | (0.157)      | #8                    | (0.164)      |
| M5              | (0.197)      | 3/16                  | (0.187)      |
| M6              | (0.236)      | 1/4                   | (0.250)      |
| M8              | (0.315)      | 5/16                  | (0.312)      |
| M10             | (0.394)      | 3/8                   | (0.375)      |
| M12             | (0.472)      | 7/16                  | (0.437)      |
|                 |              | 1/2                   | (0.500)      |
| M14             | (0.551)      | 9/16                  | (0.562)      |
| M16             | (0.630)      | 5/8                   | (0.625)      |
| M20             | (0.787)      | 3/4                   | (0.750)      |
| M24             | (0.945)      | 1                     | (1.000)      |
| M30             | (1.181)      | 1-1/8                 | (1.125)      |
| M36             | (1.417)      | 1-1/4                 | (1.250)      |
|                 |              | 1-3/8                 | (1.375)      |
| M42             | (1.653)      | 1-1/2                 | (1.500)      |
| M48             | (1.890)      | 1-3/4                 | (1.750)      |
|                 |              | 2                     | (2.000)      |
| M56             | (2.205)      | 2-1/4                 | (2.250)      |
| M64             | (2.520)      | 2-1/2                 | (2.500)      |
| M72             | (2.835)      | 2-3/4                 | (2.750)      |
| M80             | (3.150)      | 3                     | (3.000)      |
| M90             | (3.543)      | 3-1/2                 | (3.500)      |
| M100            | (3.937)      | 4                     | (4.000)      |

# METRIC/IMPERIAL COMPARATIVE CHART FOR LENGTHS

| Metric Length | Decimal (in) | Nearest Length (in) | Decimal (in) |
|---------------|--------------|---------------------|--------------|
| 10mm          | (0.394)      | 3/8                 | (0.375)      |
| 12mm          | (0.472)      | 1/2                 | (0.500)      |
| 16mm          | (0.630)      | 5/8                 | (0.625)      |
| 20mm          | (0.787)      | 3/4                 | (0.750)      |
| 25mm          | (0.984)      | 1                   | (1.000)      |
| 30mm          | (1.181       | 1-1/4               | (1.250)      |
| 35mm          | (1.387)      | 1-3/8               | (1.375)      |
| 40mm          | (1.575)      | 1-1/2               | (1.500)      |
| 45mm          | (1.772)      | 1-3/4               | (1.750)      |
| 50mm          | (1.968)      | 2                   | (2.000)      |
| 55mm          | (2.165)      | 2-1/4               | (2.250)      |
| 60mm          | (2.362)      | 2-3/8               | (3.375)      |
| 65mm          | (2.559)      | 2-1/2               | (2.500)      |
| 70mm          | (2.756)      | 2-3/4               | (2.750)      |
| 75mm          | (2.953)      | 3                   | (3.000)      |
| 80mm          | (3.150)      | 3-1/4               | (3.250)      |
| 90mm          | (3.543)      | 3-1/2               | (3.500)      |
| 100mm         | (3.937)      | 4                   | (4.000)      |
| 120mm         | (4.724)      | 4-3/4               | (4.750)      |
| 130mm         | (5.118)      | 5                   | (5.000)      |
| 140mm         | (5.512)      | 5-1/2               | (5.500)      |
| 150mm         | (5.905)      | 6                   | (6.000)      |
| 160mm         | (6.299)      | 6-1/4               | (6.250)      |
| 170mm         | (6.693)      | 6-1/2               | (6.500)      |
| 180mm         | (7.087)      | 7                   | (7.000)      |
| 190mm         | (7.480)      | 7-1/2               | (7.500)      |
| 200mm         | (7.874)      | 8                   | (8.000)      |



"The three great essentials to achieve anything worth while are, first, hard work; second, stick-to-itiveness; third, common sense."

**THOMAS EDISON** 

#### IMPERIAL/DECIMAL/METRIC **CHART FOR SMALL DIAMETERS**

| Gauge or | Decimal |       |
|----------|---------|-------|
| Dia.     | (in)    | (mm)  |
| No. 0000 | 0.021   | .53   |
| No. 000  | 0.034   | .86   |
| No. 00   | 0.047   | 1.19  |
| No. 0    | 0.060   | 1.524 |
| No. 1    | 0.073   | 1.854 |
| No. 2    | 0.086   | 2.184 |
| No. 3    | 0.099   | 2.515 |
| No. 4    | 0.112   | 2.845 |
| No. 5    | 0.125   | 3.175 |
| No. 6    | 0.138   | 3.505 |
| No. 8    | 0.164   | 4.166 |
| No. 10   | 0.190   | 4.826 |
| No. 12   | 0.216   | 5.484 |



"It is the direct man who strikes sledgehammer blows, who penetrates the very marrow of a subject at every stroke and gets the meat out of a proposition, who does things."

**ORISON S. MARDEN** 

#### **APPROXIMATE EQUIVALENCY CHART METRIC/IMPERIAL**

| ROUGHLY EQUIVALENT US BOLT MATERIALS |               |          |                       |  |  |
|--------------------------------------|---------------|----------|-----------------------|--|--|
| Metric                               | Metric        |          |                       |  |  |
| Bolt                                 | Nut Class     | SAE J429 |                       |  |  |
| Class                                | Normally Used | Grades   | ASTM Grades           |  |  |
| 4.6                                  | 4 or 5        | 1        | A307, Grade A         |  |  |
| 4.f8                                 | 4 or 5        | 2        |                       |  |  |
| 5.8                                  | 5             | 2        |                       |  |  |
| 8.8                                  | 8             | 5        | A325, A449            |  |  |
| 9.9                                  | 9             | 5+       | A193, B7 and B16      |  |  |
| 10.9                                 | 10 or 12      | 8        | A490; A354, Grade 8D  |  |  |
| 12.9                                 | 10 or 12      |          | A540; B21 through B24 |  |  |

#### **STRENGTHS**



\*Note: Metric Hex Socket Cap Screws are available in lower strength grades (8.8, 10.9) and marked accordingly.

#### **FASTENER CONVERSION CHART**

| INCH TO METRIC  |            |                         |  |  |
|-----------------|------------|-------------------------|--|--|
| Inch Equivalent |            | Metric Size-Pitch       |  |  |
| UNC             | UNF        | ISO and IFI Recommended |  |  |
| 1 - 64          | 1 - 72     | M2 x 0.4                |  |  |
| 3 - 48          | 3 - 56     | M2.5 x 0.45             |  |  |
| 4 - 40          | 4 - 48     | M3 x .05                |  |  |
| 6 - 32          | 6 - 40     | M3.5 x 0.6              |  |  |
| 8 - 32          | 8 - 36     | M4 x .07                |  |  |
| 10 - 24         | 10 - 32    | M5 x .08                |  |  |
| 1/4 - 20        | 1/4 - 28   | M6 x 1                  |  |  |
| 5/16 - 18       | 5/16 - 24  | M8 x 1.25               |  |  |
| 3/8 - 16        | 3/8 - 24   | M10 x 1.5               |  |  |
| 7/16 - 14       | 7/16 - 20  | M12 x 1.75              |  |  |
| 1/2 - 13        | 1/2 - 20   | M14 x 2                 |  |  |
| 5/8 - 11        | 5/8 - 18   | M18 x 2                 |  |  |
| 3/4 - 10        | 3/4 - 16   | M20 x 2.5               |  |  |
| 1 - 8           | 1 - 12     | M24 x 3                 |  |  |
| 1-1/4 - 7       | 1-1/8 - 12 | M30 x 3.5               |  |  |
| 1-1/2 - 6       | 1-1/4 - 12 | M36 x 4                 |  |  |
|                 |            |                         |  |  |

#### **COMMON DIN NUMBERS FOR METRIC FASTENERS**

| DIN  | Hex Capscrews                                                        |
|------|----------------------------------------------------------------------|
| 931  | Coarse thread pitch partially threaded (specify grade)               |
| 933  | Coarse thread pitch fully threaded (specify grade)                   |
| 930  | Fine thread pitch partially threaded (specify grade)                 |
| 961  | Fine thread pitch fully threaded (specify grade)                     |
| DIN  | Nuts                                                                 |
| 934  | Hex nuts (specify pitch and class)                                   |
| 985  | Nylon insert locknuts (specify pitch and class)                      |
| 980V | All metal locknuts (specify pitch and class)                         |
| DIN  | Washers                                                              |
| 125  | Flatwashers                                                          |
| 127  | Lockwashers                                                          |
| DIN  | Socket Products                                                      |
| 912  | Socket head capscrews (normally GR 12.9 and coarse thread)           |
| 7991 | Flat head socket capscrews (normally GR 12.9 and coarse thread)      |
| 916  | Socket setscrews (normally GR 12.9 and coarse thread)                |
| DIN  | Machine Screws                                                       |
| 7985 | Pan head Phillips drive zinc plated                                  |
| 965  | Flat head Phillips drive zinc plated                                 |
| DIN  | Threaded Rod                                                         |
| 975  | All threaded rod (normally 1 meter lengths, specify grade and pitch) |
|      |                                                                      |

"The great achievements have always been individualistic. Indeed, any original achievement implies separation from the majority. Though society may honour achievement, it can never produce it."

**GEORGE CHARLES ROCHE** 

"PROFESSIONALS SERVING PROFESSIONALS"

www.boltsupply.com 21

#### TORQUE FIGURES FOR METRIC COARSE THREAD BOLTS AND SCREWS

Torque figures for bolts and screws with metric thread and head dimension, as in DIN 912, 931, 933 etc.

The figures MA in this table include: a) coefficient of friction microns total

- + 0.14
- b) 90% of minimum elongation
- c) torque figures when assembling fasteners

The coefficient of friction of microns total = 0.14 applies for fasteners without coating (self-colour) when slightly lubricated. Additional lubrication of the thread will substantially alter the coefficient of friction, leading to uncontrollable pre-load situations. Pre-load situations will also be influenced by the fastening methods and tools used.

The following figures are guidelines only.

Figures in Nm (Newton meters).

#### TORQUE FIGURES FOR METRIC FINE THREAD BOLTS AND SCREWS

|     | 4.6  | 5.6   | 8.8   | 10.9  | 12.9  |  |
|-----|------|-------|-------|-------|-------|--|
| M4  | 1.02 | 1.37  | 3.0   | 4.4   | 5     |  |
| M5  | 2.00 | 2.70  | 5.9   | 8.7   | 10    |  |
| M6  | 3.50 | 4.60  | 10    | 15    | 18    |  |
| M8  | 8.40 | 11    | 25    | 36    | 43    |  |
| M10 | 17   | 22    | 49    | 72    | 84    |  |
| M12 | 29   | 39    | 85    | 125   | 145   |  |
| M14 | 46   | 62    | 135   | 200   | 235   |  |
| M16 | 71   | 95    | 210   | 310   | 365   |  |
| M18 | 97   | 130   | 300   | 430   | 500   |  |
| M20 | 138  | 184   | 425   | 610   | 710   |  |
| M22 | 186  | 250   | 580   | 820   | 960   |  |
| M24 | 235  | 315   | 730   | 1,050 | 1,220 |  |
| M27 | 350  | 470   | 1,100 | 1,550 | 1,800 |  |
| M30 | 475  | 635   | 1,450 | 2,100 | 2,450 |  |
| M33 | 645  | 865   | 1,970 | 2,770 | 3,330 |  |
| M36 | 830  | 1 111 | 2 530 | 3 560 | 4 280 |  |

**Property Classes** 

HE BOLT SUPPLY HOUSE LTD.

QUOTE

Thread Diameter

"The only thing to do with good advice is to pass it on; it is never of any use to oneself."

**OSCAR WILDE** 

|            | Tightening Torque MA max (Nm) |      |      |  |  |  |  |  |
|------------|-------------------------------|------|------|--|--|--|--|--|
| Thread     | Property Classes              |      |      |  |  |  |  |  |
| Diameter   | 8.8                           | 10.9 | 12.9 |  |  |  |  |  |
| M8 x 1.00  | 22                            | 30   | 36   |  |  |  |  |  |
| M10 x 1.25 | 42                            | 59   | 71   |  |  |  |  |  |
| M12 x 1.25 | 76                            | 105  | 130  |  |  |  |  |  |
| M14 x 1.50 | 120                           | 165  | 200  |  |  |  |  |  |
| M16 x 1.50 | 180                           | 250  | 300  |  |  |  |  |  |
| M18 x 1.50 | 260                           | 365  | 435  |  |  |  |  |  |
| M20 x 1.50 | 360                           | 510  | 610  |  |  |  |  |  |
| M22 x 1.50 | 480                           | 680  | 810  |  |  |  |  |  |
| M24 x 2.00 | 610                           | 860  | 1050 |  |  |  |  |  |

| Conversion Figures          |               |
|-----------------------------|---------------|
| To get Ncm from Nm          | Nm x 100      |
| To get inch pounds from Ncm | Ncm x 0.08851 |
| To get foot pounds from Ncm | Ncm x 0.00737 |
| To get foot pounds from Nm  | Nm x 0.7376   |

All information is strictly informative



"We pay for the mistakes of our ancestors, and it seems only fair that they should leave us the money to pay with."

DONALD MARQUIS

<sup>22</sup> www.boltsupply.com

# THE BOLT SUPPLY HOUSE LTD. COVERSION CHART - IMPERIAL/DECIMAL/METRIC

moth

| CONVERSION | I CHART |
|------------|---------|
|------------|---------|

| Fractions | Decimals | Metric     | Fractions | Decimals | Metric        | Fractions | Decimals | Metric        | Fractions  | Decimals        | Metric    |
|-----------|----------|------------|-----------|----------|---------------|-----------|----------|---------------|------------|-----------------|-----------|
| (in)      | (in)     | (mm)       | (in)      | (in)     | (mm)          | (in)      | (in)     | (mm)          | (in)       | (in)            | (mm)      |
| -         | .0004    | .01        | 25/32     | .781     | 19.844        | -         | 2.165    | 55.           | 3-11/16    | 3.6875          | 93.663    |
| -         | .004     | .10        | -         | .7874    | 20.           | 2-3/16    | 2.1875   | 55.563        | -          | 3.7008          | 94.       |
| -         | .01      | .25        | 51/64     | .797     | 20.241        | -         | 2.2047   | 56.           | 3-23/32    | 3.719           | 94.456    |
| 1/64      | .0156    | .397       | 13/16     | .8125    | 20.638        | 2-7/32    | 2.219    | 56.356        | -          | 3.7401          | 95.<br>05 |
|           | .0197    | .50        | 53/6/     | .828     | 21.           | -         | 2.244    | 57.150        | 3-3/4      | 3.750           | 95.       |
| 1/32      | 03125    | 794        | 27/32     | 844      | 21.034        | 2-9/32    | 2 281    | 57 944        | 3-25/32    | 3 781           | 96.044    |
| -         | .0394    | 1.         | 55/64     | .859     | 21.828        | -         | 2.2835   | 58.           | 3-13/16    | 3.8125          | 96.838    |
| 3/64      | .0469    | 1.191      | _         | .8661    | 22.           | 2-5/16    | 2-312    | 58.738        | _          | 3.8189          | 97.       |
| -         | .059     | 1.5        | 7/8       | .875     | 22.225        | -         | 2.3228   | 59.           | 3-27/32    | 3.844           | 97.631    |
| 1/16      | .062     | 1.588      | 57/64     | .8906    | 22.622        | 2-11/32   | 2.344    | 59.531        | -          | 3.8583          | 98.       |
| 5/64      | .0781    | 1.984      | -         | .9055    | 23.           | -         | 2.3622   | 60.           | 3-7/8      | 3.875           | 98.425    |
| -         | .0787    | 2.         | 29/32     | .9062    | 23.019        | 2-3/8     | 2.375    | 60.325        | -          | 3.8976          | 99.       |
| 3/32      | .094     | 2.381      | 59/64     | .922     | 23.416        | -         | 2.4016   | 61.           | 3-29/32    | 3.9062          | 99.219    |
| -         | 10984    | 2.5        | 15/16     | .9375    | 23.813        | 2-13/32   | 2.406    | 61.013        | 3-15/16    | 3.9370          | 100.013   |
| -         | 1181     | 3          | 61/64     | 953      | 24 209        | _         | 2 4409   | 62            | 3-31/32    | 3,969           | 100.806   |
| 1/8       | .125     | 3.175      | 31.32     | .969     | 24.606        | 2-15/32   | 2.469    | 62.706        | -          | 3.9764          | 101.      |
| -         | .1378    | 3.5        | -         | .9843    | 25.           | -         | 2.4803   | 63.           | 4          | 4.000           | 101.600   |
| 9/64      | .141     | 3.572      | 63/64     | .9844    | 25.003        | 2-1/2     | 2.500    | 63.500        | 4-1/16     | 4.062           | 103.188   |
| 5/32      | .156     | 3.969      | 1         | 1.000    | 25.400        | -         | 2.5197   | 64.           | 4-1/8      | 4.125           | 104.775   |
| -         | .1575    | 4.         | -         | 1.0236   | 26.           | 2-17/32   | 2.531    | 64.294        | -          | 4.1338          | 105.      |
| 11/64     | .172     | 4.366      | 1-1/32    | 1.0312   | 26.194        | -         | 2.559    | 65.           | 4-3/16     | 4.1875          | 106.363   |
| -         | .1//     | 4.5        | 1-1/16    | 1.062    | 26.988        | 2-9/16    | 2.562    | 65.088        | 4-1/4      | 4.250           | 107.950   |
| 3/10      | 1060     | 4.703      | 1-3/32    | 1.003    | 27.781        | 2-19/32   | 2.594    | 66            | 4-5/16     | 4.312           | 110       |
| 13/64     | .203     | 5.159      | -         | 1.1024   | 28.           | 2-5/8     | 2.625    | 66.675        | 4-3/8      | 4.375           | 111.125   |
| -         | .2165    | 5.5        | 1-1/8     | 1.125    | 28.575        | -         | 2.638    | 67.           | 4-7/16     | 4.438           | 112.713   |
| 7/32      | .219     | 5.556      | -         | 1.1417   | 29.           | 2-21/32   | 2.656    | 67.469        | 4-1/2      | 4.500           | 114.300   |
| 15/64     | .234     | 5.953      | 1-5/32    | 1.156    | 29.369        | -         | 2.6772   | 68.           | -          | 4.5275          | 115.      |
| -         | .2362    | 6.         | -         | 1.1811   | 30.           | 2-11/16   | 2.6875   | 68.263        | 4-9/16     | 4.562           | 115.888   |
| 1/4       | .250     | 6.350      | 1-3/16    | 1.1875   | 30.163        | -         | 2.7165   | 69.           | 4-5/8      | 4.625           | 117.475   |
| -         | .2559    | 6.5        | 1-7/32    | 1.219    | 30.956        | 2-23/32   | 2.719    | 69.056        | 4-11/16    | 4.6875          | 119.063   |
| 17/64     | .2656    | 6./4/<br>7 | -         | 1.2205   | 31.           | 2-3/4     | 2.750    | 69.850<br>70  | -          | 4.7244          | 120.      |
| - 9/32    | 281      | 7.         | 1-1/4     | 1.250    | 32            | - 2-25/32 | 2.7559   | 70.           | 4-3/4      | 4.750           | 122.050   |
| -         | .2953    | 715        | 1-9/32    | 1.281    | 32.544        | _         | 2.7953   | 70.0400       | 4-7/8      | 4.875           | 123.825   |
| 19/64     | .297     | 7.541      | -         | 1.2992   | 33.           | 2-13/16   | 2.8125   | 71.4376       | -          | 4.9212          | 125.      |
| 5/16      | .312     | 7.938      | 1-5/16    | 1.312    | 33.338        | -         | 2.8346   | 72.           | 4-15/16    | 4.9375          | 125.413   |
| -         | .315     | 8.         | -         | 1.3386   | 34.           | 2-27/32   | 2.844    | 72.2314       | 5          | 5.000           | 127.000   |
| 21/64     | .328     | 8.334      | 1-11/32   | 1.344    | 34.131        | -         | 2.8740   | 73.           | -          | 5.1181          | 130.      |
| -         | .335     | 8.5        | 1-3/8     | 1.375    | 34.925        | 2-7/8     | 2.875    | 73.025        | 5-1/4      | 5.250           | 133.350   |
| 11/32     | .344     | 8./31      | -         | 1.3779   | 35.           | 2-29/32   | 2.9062   | 73.819        | 5-1/2      | 5.500           | 139.700   |
| - 23/64   | .3543    | 9.         | 1-13/32   | 1.406    | 35.719        | 2-15/16   | 2.9134   | 74.<br>74.613 | 5-3/4      | 5.5118          | 140.      |
| -         | .374     | 9.5        | 1-7/16    | 1.438    | 36.513        | _         | 2.9527   | 75.           | -          | 5.9055          | 150.      |
| 3/8       | .375     | 9.525      | -         | 1.4567   | 37.           | 2-31/32   | 2.969    | 75.406        | 6          | 6.000           | 152.400   |
| 25/64     | .391     | 9.922      | 1-15/32   | 1.469    | 37.306        | -         | 2.9921   | 76.           | 6-1/4      | 6.250           | 158.750   |
| -         | .3937    | 10.        | -         | 1.4961   | 38.           | 3         | 3.000    | 76.200        | -          | 6.2992          | 160.      |
| 13/32     | .406     | 10.319     | 1-1/2     | 1.500    | 38.100        | 3-1/32    | 3.0312   | 76.994        | 6-1/2      | 6.500           | 165.100   |
| -         | .413     | 10.5       | 1-17/32   | 1.531    | 38.894        | -         | 3.0315   | 77.           | -          | 6.6929          | 170.      |
| 27/64     | .422     | 10.716     | 1 0/16    | 1.5354   | 39.           | 3-1/16    | 3.062    | 77.788        | 6-3/4<br>7 | 0.750<br>7.000  | 171.450   |
| 7/16      | 438      | 11 113     | -         | 1.502    | 40            | 3-3/32    | 3 094    | 78.581        | 1_         | 7.0866          | 180       |
| 29/64     | .453     | 11.509     | 1-19/32   | 1.594    | 40.481        | -         | 3.1102   | 79.           | -          | 7.4803          | 190.      |
| 15/32     | .469     | 11.906     | -         | 1.6142   | 41.           | 3-1/8     | 3.125    | 79.375        | 7-1/2      | 7.500           | 190.500   |
| -         | .4724    | 12.        | 1-5/8     | 1.625    | 41.275        | -         | 3.1496   | 80.           | -          | 7.8740          | 200.      |
| 31/64     | .484     | 12.303     | -         | 1.6535   | 42.           | 3-5/32    | 3.156    | 80.169        | 8          | 8.000           | 203.200   |
| -         | .492     | 12.5       | 1-21/32   | 1.6562   | 42.069        | 3-3/16    | 3.1875   | 80.963        | -          | 8.2677          | 210.      |
| 1/2       | .500     | 12.700     | 1-11/16   | 1.6875   | 42.863        | - 2 7/20  | 3.1890   | 81.<br>91.7FC | 8-1/2      | 8.500           | 215.900   |
| 33/64     | 5156     | 13.097     | 1-23/32   | 1.0929   | 40.<br>43.656 | 5-7/32    | 3,2283   | 82            | 9          | 0.0014<br>9.000 | 220.      |
| 17/32     | .531     | 13,494     | -         | 1.7323   | 44.           | 3-1/4     | 3,250    | 82,550        | l -        | 9.0551          | 230.      |
| 35/64     | .547     | 13.891     | 1-3/4     | 1.750    | 44.450        | -         | 3.2677   | 83.           | I -        | 9.4488          | 240.      |
| -         | .5512    | 14.        | -         | 1.7717   | 45.           | 3-9/32    | 3.281    | 83.344        | 9-1/2      | 9.500           | 241.300   |
| 9/16      | .563     | 14.288     | 1-25/32   | 1.781    | 45.244        | -         | 3.3071   | 84.           | -          | 9.8425          | 250.      |
| -         | .571     | 14.5       | -         | 1.8110   | 46.           | 3-5/16    | 3.312    | 84.1377       | 10         | 10.000          | 254.001   |
| 37/64     | .578     | 14.684     | 1-13/16   | 1.8125   | 46.038        | 3-11/32   | 3.344    | 84.9314       | -          | 10.2362         | 260.      |
| 10/22     | .5906    | 15.        | 1-27/32   | 1.844    | 46.831        |           | 3.3464   | 85.           | - 11       | 10.6299         | 270.      |
| 39/64     | .594     | 15.081     | - 1-7/8   | 1.8504   | 47.           | 3-3/8     | 3 3858   | 00.720<br>86  | 1-         | 11.000          | 279.401   |
| 5/8       | .625     | 15.875     | -         | 1.8898   | 48.           | 3-13/32   | 3,406    | 86.519        | 1-         | 11,4173         | 290       |
| -         | .6299    | 16.        | 1-29/32   | 1.9062   | 48.419        | -         | 3.4252   | 87.           | -          | 11.8110         | 300.      |
| 41/64     | .6406    | 16.272     | -         | 1.9291   | 49.           | 3-7/16    | 3.438    | 87.313        | 12         | 12.000          | 304.801   |
| -         | .6496    | 16.5       | 1-15/16   | 1.9375   | 49.213        | -         | 3.4646   | 88.           | 13         | 13.000          | 330.201   |
| 21/32     | .656     | 16.669     | -         | 1.9685   | 50.           | 3-15/32   | 3.469    | 88.106        | -          | 13.7795         | 350.      |
| -         | .6693    | 17.        | 1-31/32   | 1.969    | 50.006        | 3-1/2     | 3.500    | 88.900        | 14         | 14.000          | 355.601   |
| 43/64     | .6/2     | 17.066     | 2         | 2.000    | 50.800        | - 2 17/20 | 3.5039   | 89.           | 15         | 15.000          | 381.001   |
| 45/64     | .0070    | 17.403     | 2-1/32    | 2.0079   | 51.594        |           | 3.5433   | 09.094<br>90  | 16         | 16,000          | 400.      |
| -         | .7087    | 18.        | -         | 2.0472   | 52.           | 3-9/16    | 3.562    | 90.4877       | 17         | 17.000          | 431.801   |
| 23/32     | .719     | 18.256     | 2-1/16    | 2.062    | 52.388        | -         | 3.5827   | 91.           | 1-         | 17.7165         | 450.      |
| -         | .7283    | 18.5       | -         | 2.0866   | 53.           | 3-19/32   | 3.594    | 91.281        | 18         | 18.000          | 457.201   |
| 47/64     | .734     | 18.653     | 2-3/32    | 2.094    | 53.181        | -         | 3.622    | 92.           | 19         | 19.000          | 482.601   |
| -         | .7480    | 19.        | 2-1/8     | 2.125    | 53.975        | 3-5/8     | 3.625    | 92.075        | -          | 19.6850         | 500.      |
| 3/4       | .750     | 19.050     | -         | 2.126    | 54            | 3-21/32   | 3.656    | 92.869        | 20         | 20.000          | 508.001   |
| 49/64     | ./656    | 19.447     | 2-5/32    | 2.156    | 54.769        | 1 -       | 3.6614   | 93.           | 1          |                 |           |

"PROFESSIONALS SERVING PROFESSIONALS"

www.boltsupply.com 23

# METRIC EQUIVALENT CHART

# THE BOLT SUPPLY HOUSE LTD.

|               | $\square \forall$                                                                                    | or (om) - 1000 millimators (mm) 1000 maters One kilomator (km)    |
|---------------|------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
|               | One METER (m) = 10 decimeter (dm) = 100 centimeter<br>One SOLIABE METER (m2) = 100 sq decimeters (dm | P(Cm) = 1000  millimeters (mm) 1000  meters = One kilometer (km)  |
| JBIC          | One CUBIC METER (m3) = 1000 cu decimeter (dm3)                                                       | = $1.000.000$ cu centimeters (cm3)                                |
| APACITY       | One LITRE (L) = 10 decilitres (dL) = 1000 millilitres (r                                             | nL) 100 litres = One Hectolitre (hL)                              |
| EIGHT         | One DILOGRAM (kg) = 100 decagrams (dkg) = 1000 g                                                     | rams (g) 100 kilos = One metric cent (q) 1000 kilos = One ton (t) |
| RESSURE       | KILO PER SQUARE CENTIMETER (kg/cm2) O                                                                | ne kilo per sq centimeter = One ATMOSPHERE (atm)                  |
| MPERATURE     | CENTIGRADE degree (°C) = CELCIUS degree (°C)                                                         |                                                                   |
| METRIC CON    | NVERSION EQUIVALENTS                                                                                 |                                                                   |
|               |                                                                                                      | NEAR                                                              |
|               | INCH to METRIC                                                                                       | METRIC to INCH                                                    |
|               | 1 inch = 25,400 millimeters                                                                          | 1 millimeter = .0393700 inches                                    |
|               | 1 inch = 2.540 centimeters                                                                           | 1 centimeter = .393700 inches                                     |
|               | 1 foot = 304.800 millimeters                                                                         | 1 meter = 39.3700 inches                                          |
|               | 1 foot = 30.480 centimeters                                                                          | 1 meter = 3,2808 feet                                             |
|               | 1 foot = 0.3048 meters                                                                               | 1 meter = 1.0936 yards                                            |
| 1             | 1 yard = 91.4400 centimeters                                                                         | 1 kilometer = .62137 miles                                        |
|               | 1 yard = 0.9144 meters                                                                               |                                                                   |
|               | 1 mile = 1.609.35 meters                                                                             |                                                                   |
|               | 1 mile = 1.609 kilometers                                                                            |                                                                   |
|               |                                                                                                      |                                                                   |
|               | SQ INCH to METRIC                                                                                    |                                                                   |
| 1 4           | sa inch – 645 16 sa millimeters                                                                      | 1 sa millimeter - 00155 sa inches                                 |
| 1.0           | $r_{\rm c}$ inch = 6.4516 sq continuities                                                            | 1 sq centimeter - 1550 sq inches                                  |
| 1 5           | sq fact = 0.20 00 cg continueters                                                                    | 1  sq mater = 10.7640  sq fact                                    |
| 18            | 1  cg foot = 0020  cg motors                                                                         | 1  sq meter = 1.196  sq verd                                      |
|               | 1  sq vord = .0929  sq meters                                                                        | 1 og kilometer - 29614 og miloe                                   |
| 4             | 1  Sq yard = .836  Sq meters                                                                         | 1  sq knometer = .38614  sq miles                                 |
| 1 3           | sq mile = 2.5669 sq kilometers                                                                       |                                                                   |
|               |                                                                                                      | UBIC                                                              |
|               | CU. INCH to METRIC                                                                                   | METRIC to CU. INCH                                                |
| 1 c           | u inch = 16.387 sq centimeters                                                                       | 1 cu centimeter = .0610 cu inches                                 |
|               | 1 cu foot = .02832 cu meters                                                                         | 1 cu meter = 35.314 cu feet                                       |
|               | 1 cu yard = .765 cu meters                                                                           | 1 cu meter = 1.308 cu yards                                       |
|               |                                                                                                      |                                                                   |
|               |                                                                                                      | METRIC to IMPERIAL                                                |
|               | 1 fluid $oz = 28.413$ millilitres                                                                    | 1 millilitre = $0.035195$ fluid oz                                |
|               | 1 fluid $\sigma_z = 0.02841$ litres                                                                  | 1 centilitre $-0.35195$ fluid oz                                  |
|               | 1  pint = 0.56826  litres                                                                            | 1  decilitre = 3.5195  fluid oz                                   |
|               | 1  guart = 1.13652  litres                                                                           | 1  litre = 0.88  guarte                                           |
|               | 1 gallon $-4.546$ litres                                                                             | 1 hectolitre – 21 0060 gallons                                    |
|               | 1 gallon – 4.340 littes                                                                              | 1 nectolitie – 21.9909 galons                                     |
|               |                                                                                                      | FIGHT                                                             |
|               | AVOIR DUPOIS to METRIC                                                                               | METRIC to AVOIR DUPOIS                                            |
|               | 1 grain = 64.7989 milligrams                                                                         | 1 gram = 15.432 grains                                            |
|               | 1 ounce = 28.35 grams                                                                                | 1 dekogram = .353 oz                                              |
|               | 1 lb = .4536 kilograms                                                                               | 1 kilogram = 2.2046 pounds                                        |
| 1 short       | t ton (2000 lb) = 907.200 kilograms                                                                  | 1 metric cent = 220.46 pounds                                     |
| 1 short       | t ton (2000 lb) = 9.072 metric cents                                                                 | 1 ton = 2204.6 lb                                                 |
| 1 :           | short ton (2000 lb) = 9.072 ton                                                                      | 1  ton = 1.102  short tons                                        |
|               |                                                                                                      |                                                                   |
| D             |                                                                                                      |                                                                   |
| 1 nound/sq in | ch - 0703 kilogram per square contineter                                                             | 1 kilogram/sg centimeter - 14 222 pounde/sg inch                  |
| 1 pound       | /sq inch - 0703 atmosphere (metric)                                                                  | 1 kilogram/sq centimeter – 1 atmosphero                           |
| r pound       |                                                                                                      |                                                                   |
|               | ТЕМР                                                                                                 | ERATURE                                                           |
|               | FAHRENHEIT to CELSIUS                                                                                | CELSIUS to FAHRENHEIT                                             |
| 1 Fahrer      | nneit degree (°F) = 1.8 x (°C) plus 32                                                               | 1 Centigrade (Celsius) degree (°) = .556 x (°F minus 32)          |
|               |                                                                                                      |                                                                   |

# METRIC TAP DRILL CHART

#### **RECOMMENDED TAPPING DRILL SIZE**

#### **M (ISO METRIC COARSE)**

| Size | Pitch | Drill |  |  |
|------|-------|-------|--|--|
| mm   | mm    | mm    |  |  |
| M1   | .25   | .75   |  |  |
| M1.1 | .25   | .85   |  |  |
| M1.2 | .25   | .95   |  |  |
| M1.4 | .3    | 1.1   |  |  |
| M1.6 | .35   | 1.25  |  |  |
| M1.8 | .35   | 1.45  |  |  |
| M2   | .4    | 1.6   |  |  |
| M2.2 | .45   | 1.75  |  |  |
| M2.5 | .45   | 2.05  |  |  |
| M3   | .5    | 2.5   |  |  |
| M3.5 | 6     | 2.9   |  |  |
| M4   | .7    | 3.3   |  |  |
| M4.5 | .75   | 3.75  |  |  |
| M5   | .8    | 4.2   |  |  |
| M6   | 1     | 5     |  |  |
| M7   | 1     | 6     |  |  |
| M8   | 1.25  | 6.75  |  |  |
| M9   | 1.25  | 7.75  |  |  |
| M10  | 1.5   | 8.5   |  |  |
| M11  | 1.5   | 9.5   |  |  |
| M12  | 1.75  | 10.2  |  |  |
| M14  | 2     | 12    |  |  |
| M16  | 2     | 14    |  |  |
| M18  | 2.5   | 15.5  |  |  |
| M20  | 2.5   | 17.5  |  |  |
| M22  | 2.5   | 19.5  |  |  |
| M24  | 3     | 21    |  |  |
| M27  | 3     | 24    |  |  |
| M30  | 3.5   | 26.5  |  |  |
| M33  | 3.5   | 29.5  |  |  |
| M36  | 4     | 32    |  |  |
| M39  | 4     | 35    |  |  |
| M42  | 4.5   | 37.5  |  |  |
| M45  | 4.5   | 40.5  |  |  |
| M48  | 5     | 43    |  |  |
| M52  | 5     | 47    |  |  |
| M56  | 5.5   | 50.5  |  |  |
| M60  | 5.5   | 54.5  |  |  |
| M64  | 6     | 58    |  |  |
| M68  | 6     | 62    |  |  |
| M72  | 6     | 66    |  |  |
| M76  | 6     | 70    |  |  |
|      | -     | -     |  |  |

| MF (ISO | METRIC FINE) |
|---------|--------------|
| Size    | Pitch        |

| Size | Pitch | Drill |
|------|-------|-------|
| mm   | mm    | mm    |
| M2   | .25   | 1.75  |
| M2.2 | .25   | 1.95  |
| M2.3 | .25   | 2.05  |
| M2.5 | .35   | 2.15  |
| M2.6 | .35   | 2.25  |
| M3   | .35   | 2.65  |
| M3.5 | .35   | 3.15  |
| M4   | .35   | 3.65  |
| M4   | .5    | 3.5   |
| M5   | .35   | 4.65  |
| M5   | .5    | 4.5   |
| M5   | .75   | 4.25  |
| M5 5 | 5     | 5     |
| M6   | 5     | 55    |
| M6   | 75    | 5.25  |
| M7   | 75    | 6.25  |
| M8   | 5     | 7.5   |
| M8   | .5    | 7.25  |
| M8   | 1     | 7     |
| MQ   | 75    | 8.25  |
| MO   | ./5   | 0.20  |
| M10  | .1    | 0.5   |
| MIO  | .5    | 9.0   |
| MIO  | ./5   | 9.20  |
| MIO  | 1     | 9     |
|      | 1.25  | 8.75  |
|      | ./5   | 10.25 |
|      | 1     | 10    |
| M11  | 1.25  | 9.75  |
| M12  | .5    | 11.5  |
| M12  | .75   | 11.25 |
| M12  | 1     | 11    |
| M12  | 1.25  | 10.75 |
| M12  | 1.5   | 10.5  |
| M14  | 1     | 13    |
| M14  | 1.25  | 12.75 |
| M14  | 1.5   | 12.5  |
| M15  | .75   | 14.25 |
| M15  | 1     | 14    |
| M15  | 1.5   | 13.5  |
| M16  | .5    | 15.5  |
| M16  | .75   | 15.25 |
| M16  | 1     | 15    |
| M16  | 1.25  | 14.75 |
| M16  | 1.5   | 14.5  |
| M17  | 1     | 16    |
| M17  | 1.5   | 15.5  |
| M18  | .75   | 17.25 |
| M18  | 1.25  | 16.75 |
| M18  | 1.5   | 16.5  |
| M18  | 2     | 16    |
| M19  | 1     | 18    |
| M20  | 1     | 19    |
| M20  | 1.5   | 18.5  |
| M20  | 2     | 18    |
| M22  | 1     | 21    |
| M22  | 1.5   | 20.5  |
| M22  | 2     | 20    |
| M24  | 1     | 23    |

# MF (ISO METRIC FINE)

| Size  | Pitch    | Drill                  |
|-------|----------|------------------------|
| mm    | mm       | mm                     |
| M24   | 1.5      | 22.5                   |
| M24   | 2        | 22                     |
| M25   | 1        | 24                     |
| M25   | 1.5      | 23.5                   |
| M25   | 2        | 23                     |
| M27   | 1        | 26                     |
| M27   | 1.5      | 25.5                   |
| M27   | 2        | 25                     |
| M28   | 1        | 27                     |
| M28   | 1.5      | 26.5                   |
| M28   | 2        | 26                     |
| M30   | 1        | 29                     |
| M30   | 1.5      | 28.5                   |
| M30   | 2        | 28                     |
| M30   | 3        | 27                     |
| M32   | 1        | 31                     |
| M32   | 1.5      | 30.5                   |
| M32   | 2        | 30                     |
| M33   | 1.5      | 31.5                   |
| M33   | 2        | 31                     |
| M33   | 3        | 30                     |
| M35   | 1.5      | 33.5                   |
| M35   | 2        | 33                     |
| M35   | 3        | 32                     |
| M36   | 1        | 35                     |
| M36   | 1.5      | 34.4                   |
| M36   | 2        | 34                     |
| M36   | 3        | 33                     |
| M38   | 1        | 37                     |
| M38   | 1.5      | 36.5                   |
| M38   | 2        | 36                     |
| M39   | 1.5      | 37.5                   |
| M39   | 2        | 37                     |
| M39   | 3        | 36                     |
| M40   | 1        | 39                     |
| M40   | 15       | 38.5                   |
| M40   | 3        | 37                     |
| M42   | 1.5      | 40.5                   |
| M42   | 2        | 40                     |
| M42   | 3        | 39                     |
| M42   | 4        | 38                     |
| M45   | 1.5      | 43.5                   |
| M45   | 2        | 43                     |
| M45   | 3        | 42                     |
| M48   | 15       | 46.5                   |
| M48   | 2        | 46                     |
| M48   | 3        | 45                     |
| M48   | 4        | 44                     |
| M50   | 15       | 48.5                   |
| M50   | 2        | 48                     |
| M50   | 3        | 40                     |
| M52   | 15       | <del>4</del> 7<br>50 5 |
| M52   | 2        | 50.0                   |
| M52   | 2        | 40                     |
| M52   | 3        | 49                     |
| MEG   |          | 40<br>54               |
| MEG   | <u> </u> | 54                     |
| OCIVI | 4        | J∠                     |

All information is strictly informative

QUOTE

"I know of no more disagreeable situation than to be left feeling generally angry without anybody in particular to be angry at." FRANK MOORE COLBY

"PROFESSIONALS SERVING PROFESSIONALS"

www.boltsupply.com<sup>25</sup>

## **IMPERIAL TAP DRILL GUIDE**

# TAP DRILL SIZES

## **DECIMAL EQUIVALENTS** Fractional • Wire • Metric • Letter Sizes

(Bolt Threads)

| •                                       |                 |                                                            |
|-----------------------------------------|-----------------|------------------------------------------------------------|
| Thread                                  | Drill           | Drill Size                                                 |
| 0.90                                    | 2/64            | 0.10                                                       |
| 0-00                                    | 50              | 0.10                                                       |
| 1-64                                    | 53              | 97                                                         |
| 1-72                                    | 53              | 96                                                         |
| 2-56                                    | 51              | 95                                                         |
| 2-64                                    | 50              | 94                                                         |
| 3-48                                    | 5/64            | 93                                                         |
| 3-56                                    | 46              | 02                                                         |
| 3-30                                    | 40              | 92                                                         |
| 4-40                                    | 43              | 0.20                                                       |
| 4-48                                    | 42              | 91                                                         |
| 5-40                                    | 39              | 90                                                         |
| 5-44                                    | 37              | 89                                                         |
| 6-32                                    | 36              | 88                                                         |
| 6-40                                    | 33              | 87                                                         |
| 8-32                                    | 29              | 86                                                         |
| 0.02                                    | 20              | 00                                                         |
| 0-30                                    | 29              | 00                                                         |
| 10-24                                   | 25              | 84                                                         |
| 10-32                                   | 21              | 0.30                                                       |
| 12-24                                   | 17              | 83                                                         |
| 12-28                                   | 15              | 82                                                         |
| 1/4-20                                  | 7               | 81                                                         |
| 1/4-28                                  | 3               | 80                                                         |
| <u> </u>                                | -               | 0.05                                                       |
| 5/10-18                                 | F               | 0.35                                                       |
| 5/16-24                                 | I               | 79                                                         |
| 3/8-16                                  | 5/16            | 1/64                                                       |
| 3/8-24                                  | Q               | 0.40                                                       |
| 7/16-14                                 | U               | 78                                                         |
| 7/16-20                                 | W               | 0.45                                                       |
| 1/2-13                                  | 27/64           | 77                                                         |
| 1/2 20                                  | 20/64           | 0.50                                                       |
| 1/2-20                                  | 29/04           | 0.50                                                       |
| 9/16-12                                 | 31/64           | 76                                                         |
| 9/16-18                                 | 33/64           | 75                                                         |
| 5/8-11                                  | 17/32           | 0.55                                                       |
| 5/8-18                                  | 37/64           | 74                                                         |
| 3/4-10                                  | 21/32           | 0.60                                                       |
| 3/4-16                                  | 11/16           | 73                                                         |
| 7/9 0                                   | 40/64           | 70                                                         |
| 7/0-9                                   | 49/04           | 12                                                         |
| 7/8-14                                  | 13/16           | 0.65                                                       |
| 1-8                                     | 7/8             | 71                                                         |
| 1-12                                    | 59/64           | 0.70                                                       |
| 1-14                                    | 15/16           | 70                                                         |
|                                         |                 | 69                                                         |
|                                         |                 | 0.75                                                       |
| TAP DR                                  | ILL             | 68                                                         |
| 61766                                   |                 | 1/22                                                       |
| JIZEJ                                   |                 | 1/32                                                       |
| NPT (Pi                                 | pe) Threa       | d 0.80                                                     |
|                                         |                 | 67                                                         |
| Thread                                  | Drill           | 66                                                         |
| 1/16 (27)                               | D               | 0.85                                                       |
| 1/8 (27)                                | R               | 65                                                         |
| 1/4 (18)                                | 7/16            | 0.90                                                       |
| 3/8 (18)                                | 37/64           | 64                                                         |
| 3/8 (18)                                | 37/04           | 62                                                         |
| $\frac{1/2(14)}{2(4(14))}$              | 23/32           | 03                                                         |
| 3/4 (14)                                | 59/64           | 0.95                                                       |
| 1" (11-1/2)                             | 1-5/32          | 62                                                         |
| 1-1/4 (11-1                             | /2) 1-1/2       | 61                                                         |
| 1-1/2 (11-1                             | /2) 1-47/64     | 1.00                                                       |
| 2" (11-1/2)                             | ,_,, <b>.</b> . |                                                            |
| 1 ( 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | 2-7/32          | 60                                                         |
| L., ,                                   | 2-7/32          | 60<br>59                                                   |
|                                         | 2-7/32          | 60<br>59                                                   |
| ,                                       | 2-7/32          | 60<br>59<br>1.05                                           |
|                                         | 2-7/32          | 60<br>59<br>1.05<br>58                                     |
|                                         | 2-7/32          | 60<br>59<br>1.05<br>58<br>57                               |
| ,                                       | 2-7/32          | 60<br>59<br>1.05<br>58<br>57<br>1.10                       |
| <u> </u>                                | 2-7/32          | 60<br>59<br>1.05<br>58<br>57<br>1.10<br>1.15               |
| ,                                       | 2-7/32          | 60<br>59<br>1.05<br>58<br>57<br>1.10<br>1.15<br>56         |
|                                         | 2-7/32          | 60<br>59<br>1.05<br>58<br>57<br>1.10<br>1.15<br>56<br>3/64 |

| Decimal | Drill Size             |
|---------|------------------------|
|         | 1.05                   |
| .0039   | 1.35                   |
| .0059   | 54                     |
| .0063   | 1.40                   |
| .0067   | 1.45                   |
| .0071   | 1.50                   |
| 0075    | 53                     |
| 0070    | 1.55                   |
| .0079   | 1.55                   |
| .0079   | 1/16                   |
| .0083   | 1.60                   |
| .0087   | 52                     |
| .0091   | 1.65                   |
| 0095    | 1 70                   |
| 0100    | 51                     |
| .0100   | 1 75                   |
| .0105   | 1.75                   |
| .0010   | 50                     |
| .0015   | 1.80                   |
| .0018   | 1.85                   |
| .0120   | 49                     |
| 0125    | 1.90                   |
| 0130    | 18                     |
| 0125    | 1.05                   |
| .0135   | 1.95                   |
| .0138   | 5/64                   |
| .0145   | 47                     |
| .0156   | 2.00                   |
| .0157   | 2.05                   |
| 0160    | 46                     |
| 0177    | 45                     |
| .0177   | <del>4</del> 5<br>0.10 |
| .0180   | 2.10                   |
| .0197   | 2.15                   |
| .0200   | 44                     |
| .0210   | 2.20                   |
| .0217   | 2.25                   |
| .0225   | 43                     |
| 0236    | 2 30                   |
| .0230   | 2.50                   |
| .0240   | 2.35                   |
| .0250   | 42                     |
| .0256   | 3/32                   |
| .0260   | 2.40                   |
| .0276   | 41                     |
| .0280   | 2.45                   |
| .0292   | 40                     |
| 0295    | 2 50                   |
| 0210    | 20                     |
| .0310   | 39                     |
| .0312   | 38                     |
| .0315   | 2.60                   |
| .0320   | 37                     |
| .0330   | 2.70                   |
| .0335   | 36                     |
| .0350   | 7/64                   |
| 0354    | 35                     |
| 0360    | 2.80                   |
| .0300   | 2.00                   |
| .0370   | 34                     |
| .0374   | 33                     |
| .0380   | 2.90                   |
| .0390   | 32                     |
| .0394   | 3.00                   |
| 0400    | 31                     |
| 0410    | 3 10                   |
| 0/12    | 1/9                    |
| .0413   | 1/8                    |
| .0420   | 3.20                   |
| .0430   | 30                     |
| .0433   | 3.30                   |
| .0453   | 3.40                   |
| .0465   | 29                     |
| 0469    | 3.50                   |
| .0403   | 0.50                   |
| .0472   | 20                     |
| .0492   | 9/64                   |
| .0512   | 3.60                   |
| 0520    | 27                     |

| ze Decimal | Drill Size  |
|------------|-------------|
| .0531      | 3.70        |
| .0550      | 26          |
| .0551      | 25          |
| .0571      | 3.80        |
| .0591      | 24          |
| .0595      | 3.90        |
| 0610       | 23          |
| 0625       | 5/32        |
| 0630       | 22          |
| .0000      | 4.00        |
| .0035      | 4.00        |
| .0650      | 21          |
| .0669      | 20          |
| .0570      | 4.10        |
| .0689      | 4.20        |
| .0700      | 19          |
| .0709      | 4.30        |
| .0728      | 18          |
| .0730      | 11/64       |
| .0748      | 17          |
| .0760      | 4.40        |
| .0768      | 16          |
| .0781      | 4.50        |
| .0785      | 15          |
| .0787      | 4.60        |
| .0807      | 14          |
| .0810      | 13          |
| .0820      | 4.70        |
| .0827      | 3/16        |
| .0846      | 12          |
| .0860      | 4.80        |
| .0866      | 11          |
| .0886      | 4.90        |
| .0890      | 10          |
| .0906      | 9           |
| .0925      | 5.00        |
| .0935      | 8           |
| .0938      | 5.10        |
| .0945      | 7           |
| .0960      | 13/64       |
| .0965      | 6           |
| .0980      | 5.20        |
| .0984      | 5           |
| .0995      | 5.30        |
| .1015      | 4           |
| .1024      | 5.40        |
| .1040      | 3           |
| .1063      | 5.50        |
| 1003       | <u>1/32</u> |
| 1100       | 5.00        |
| 1100       | <u> </u>    |
| 1110       | 1           |
| .1110      | 5.90        |
| .1130      | 5.60        |
| 1160       | 5.90        |
| 1100       | 15/64       |
| 1200       | 6.00        |
| 1200       | 0.00        |
| 1250       | 6 10        |
| 1260       | 0.10        |
| 1200       | 6.20        |
| 1200       | 0.20        |
| 1320       | 6 20        |
| 1360       | 1/4         |
| 1379       | F           |
| 1/05       | 6.40        |
| 1406       | 6 50        |
| 1417       | 5.50<br>F   |
| 1440       | 6.60        |
| ++v        | 10.00       |

| Orill Size | Decimal |
|------------|---------|
| 8.70       | .1457   |
| 26         | .1470   |
| 25         | .1495   |
| 8.80       | .1496   |
| 24         | .1520   |
| 8.90       | .1535   |
| 23         | .1540   |
| 0/32       | .1562   |
| 2          | .1570   |
| 1          | 1500    |
| 20         | 1610    |
| 10         | 1614    |
| 20         | 1654    |
| 9          | .1660   |
| .30        | .1693   |
| 8          | .1695   |
| 1/64       | .1719   |
| 7          | .1730   |
| .40        | .1732   |
| 6          | .1770   |
| .50        | .1772   |
| 5          | .1800   |
| .60        | .1811   |
| 4          | .1820   |
| 3          | .1850   |
| .70        | .1850   |
| 6/16       | .1875   |
| 2          | .1890   |
| .80        | .1890   |
| 1          | .1910   |
| .90        | .1929   |
| 0          | .1935   |
|            | .1960   |
| 00         | .1969   |
| : 10       | .1990   |
| ,          | 2010    |
| 3/64       | 2031    |
| 5,01       | .2040   |
| 5.20       | .2047   |
| ;          | .2055   |
| 5.30       | .2087   |
| ŀ          | .2090   |
| 5.40       | .2126   |
| 3          | .2130   |
| 5.50       | .2165   |
| /32        | .2188   |
| 6.60       | .2205   |
|            | .2210   |
| 5.70       | .2244   |
|            | .2280   |
| 5.80       | .2283   |
| 5.90       | .2323   |
| ۱          | .2340   |
| 5/64       | .2344   |
| 5.00       | .2362   |
| 3          | .2380   |
| 5.10       | .2402   |
| ;          | .2420   |
| 5.20       | .2441   |
| )          | .2460   |
| 0.30       | .2480   |
| /4         | .2500   |
| : 10       | .2500   |
| 50         | .2020   |
|            | .2009   |
| 60         | 2598    |
|            | .2000   |

| Drill Size | Decimal |
|------------|---------|
| G          | 2610    |
| 6 70       | 2638    |
| 17/64      | 2656    |
|            | 2660    |
| 6.90       | 2677    |
| 0.00       | .20//   |
| 0.90       | .2717   |
| 7.00       | .2720   |
| 7.00       | .2756   |
| J          | .2770   |
| 7.10       | .2795   |
| K          | .2810   |
| 9/32       | .2812   |
| 7.20       | .2835   |
| 7.30       | .2874   |
| L          | .2900   |
| 7.40       | .2913   |
| M          | .2950   |
| 7.50       | .2953   |
| 19/64      | .2969   |
| 7.60       | .2992   |
| N          | .3020   |
| 7.70       | .3031   |
| 7.80       | .3071   |
| 7.90       | .3110   |
| 5/16       | .3125   |
| 8.00       | .3150   |
| 0          | .3160   |
| 8.10       | .3189   |
| 8.20       | .3228   |
| Р          | .3230   |
| 8.30       | .3268   |
| 21/64      | .3281   |
| 8 40       | 3307    |
| 0          | 3320    |
| 8 50       | 3346    |
| 8.60       | 3386    |
| B.00       | 3300    |
| 8 70       | 3425    |
| 11/32      | 3/38    |
| 8.80       | 3465    |
| 0.00       | 2400    |
| 000        | .3400   |
| 0.90       | .3504   |
| 9.00       | .3543   |
| 1          | .3580   |
| 9.10       | .3583   |
| 23/64      | .3594   |
| 9.20       | .3622   |
| 9.30       | .3661   |
| U          | .3680   |
| 9.40       | .3701   |
| 9.50       | .3740   |
| 3/8        | .3750   |
| V          | .3770   |
| 9.60       | .3780   |
| 9.70       | .3819   |
| 9.80       | .3858   |
| W          | .3860   |
| 9.90       | .3998   |
| 25/64      | .3906   |
| 10.00      | .3937   |
| Х          | .3970   |
| 10.20      | .4016   |
| Y          | .4040   |
| 10.30      | .4055   |
| 13/32      | .4062   |
| Z          | .4130   |
| 10.50      | 4134    |
| 27/64      | 4219    |
| 10.80      | 1252    |
|            | .+252   |

# THE BOLT SUPPLY HOUSE LTD.

Drill Size Decimal

| 11.00 | .4331  |
|-------|--------|
| 7/16  | .4375  |
| 11.20 | .4409  |
| 11.50 | .4528  |
| 29/64 | .4531  |
| 11.80 | .4646  |
| 15/32 | 4688   |
| 12.00 | 4724   |
| 12.00 | .4724  |
| 12.20 | .4003  |
| 31/64 | .4844  |
| 12.50 | .4921  |
| 1/2   | .5000  |
| 13.00 | .5118  |
| 33/64 | .5156  |
| 17/32 | .5312  |
| 13.50 | .5315  |
| 35/64 | 5469   |
| 14.00 | 5512   |
| 0/10  | .0012  |
| 9/10  | .5025  |
| 14.50 | .5709  |
| 37/64 | .5781  |
| 15.00 | .5906  |
| 19/32 | .5938  |
| 39/64 | .6094  |
| 15 50 | 6102   |
| 5/8   | 6250   |
| 16.00 | 6200   |
| 10.00 | .0299  |
| 41/64 | .6406  |
| 16.50 | .6495  |
| 21/32 | .5452  |
| 17.00 | .6693  |
| 43/64 | .6719  |
| 11/16 | .6875  |
| 17 50 | 6890   |
| 45/64 | 7031   |
| 10 00 | 7097   |
| 00/00 | .7007  |
| 23/32 | ./ 188 |
| 18.50 | .7283  |
| 47/64 | .7344  |
| 19.00 | .7480  |
| 3/4   | .7500  |
| 49/64 | .7656  |
| 19.50 | .7677  |
| 25/32 | 7812   |
| 20.00 | 7874   |
| 51/64 | 7060   |
| 00.50 | ./909  |
| 20.50 | .80/1  |
| 13/16 | .8125  |
| 21.00 | .8268  |
| 53/64 | .8281  |
| 27/32 | .8438  |
| 21.50 | .8465  |
| 55/64 | .8594  |
| 22 00 | 8661   |
| 7/9   | 9750   |
| 1/0   | .0/50  |
| 22.50 | .8858  |
| 57/64 | .8906  |
| 23.00 | .9055  |
| 29/32 | .9062  |
| 59/64 | .9219  |
| 23.50 | .9252  |
| 15/16 | 9375   |
| 24.00 | 0440   |
| 24.00 | .9449  |
| 61/64 | .9531  |
| 24.50 | .9646  |
| 31/32 | .9688  |
| 25.00 | .9843  |
| 63/64 | .9844  |
| 1     | 1.000  |
|       |        |

www.boltsupply.com 26

1.20 1.25 1.30 55

# THE BOLT SUPPLY <u>HOUSE LTD.</u>

# **HOW TO MEASURE FASTENERS**

#### **FASTENER MEASUREMENT CHART** WOOD SCREWS **MACHINE SCREWS** SET SCREWS and STUDS **HEXAGON NUTS** $(\bigcirc)$ $(\mathbf{+})$ $\leftrightarrow$ Dia. Round Socket Cap Round Å – Width 🔶 🔶 Thick 1111 Flat Socket Set Flat WASHERS 11 I.D. Oval Oval Square Set - Length 🔶 0.D. —> -> ¦⊺¦ Studs Pan **Plain Steel Washers** ←Length→ Truss Dia. Fillister Length→ Lock Washers **TAPPING SCREWS** STANDARD PINS **Measuring Threads CAP SCREWS and BOLTS** Hex Measuring threads Per inch Cotter Flat Carriage Measuring threads by pitch Clevis Oval N. Gad Plow Taper Determine tpi or pitch Pan Square Spring - Length → Truss Laa Length

"PROFESSIONALS SERVING PROFESSIONALS"

www.boltsupply.com 27

# TECHNICAL

т

# SELF-TAPPING SCREWS - HEAD STYLES

| Schematic   | Head<br>Style          | Description                                                                                                                                                                                                                                                  | Applications /<br>Advantages                                                                                                                                                                                                               |  |
|-------------|------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
|             | Bugle                  | A countersunk head with a flat top surface and a concave underhead bearing surface.                                                                                                                                                                          | Designed specifically for use in drywall. Distributes<br>bearing stress over a wider area than flat heads.                                                                                                                                 |  |
|             | Pan                    | Slotted pan heads have a flat or gently rounded top<br>surface, cylindrical sides and a flat bearing surface.<br>Phillips, Torx, and square pan heads have a rounded<br>top surface, cylindrical sides and a flat bearing surface.                           | For general applications. Can be substituted in most applications for round, truss or bearing heads.                                                                                                                                       |  |
|             | Flat 82°               | A countersunk head with a flat top surface and a<br>coneshaped bearing surface with a head angle<br>of approximately 82°.                                                                                                                                    | Used in applications where protrusion of the fastener above the mating surface is unacceptable. Use a protrusion gauge when measuring head height.                                                                                         |  |
|             | Flat<br>Undercut       | Similar to an 82° flat head except that the head is<br>undercut to 70% of its normal side height.                                                                                                                                                            | Standard for short lengths because it allows greater<br>length of threads. Also avoids transition fillet and<br>assembly interference.                                                                                                     |  |
|             | Indented Hex           | Has an indented top surface, six flat sides,<br>and a flat bearing surface.                                                                                                                                                                                  | top surface, six flat sides,<br>tt bearing surface.<br>Preferred in high volume assembly where<br>pneumatic equipment is used to drive the screw.<br>Can transmit significantly higher tightening<br>torque levels than other head styles. |  |
|             | Indented Hex<br>Washer | Has an indented top surface, six flat sides with a<br>flat washer which projects beyond the sides and<br>provides a flat bearing surface. The washer and hex<br>head are formed together as one piece                                                        | Increased bearing area reduces likelihood of crushing mating surfaces.                                                                                                                                                                     |  |
|             | Serrated Hex<br>Washer | Same as an indented Hex Washer head but with<br>serrations formed into the bearing surface on the<br>same nominal size                                                                                                                                       | Serration geometry is oriented to resist loosening.<br>Also slows the screw at the point of engagement<br>with the mating piece of sheet metal<br>so as to minimize stripping.                                                             |  |
|             | Truss                  | Has a low rounded top with a flat bearing surface<br>greater in area than a round-head screw<br>of the same nominal size                                                                                                                                     | Weaker than pan or round heads but preferred<br>in applications where minimal clearance exists<br>above the head. Truss profile provides a trim,<br>finished appearance.                                                                   |  |
|             | Wafer                  | A countersunk head with a flat top surface and a<br>cone-shaped bearing surface. The wafer's<br>70° conical underhead area does not extend to the<br>outer edge of the head, providing a bearing surface of<br>16° around the circumference of the underhead | Preferred head style for Type-CSD self-drilling screws.<br>Provides the necessary bearing surface and flush fit<br>in wood and softer materials. The head/shank fillet<br>contoured to strengthen the underhead area.                      |  |
|             | Oval                   | A countersunk head with a rounded top surface and a<br>cone-shaped bearing surface of approximately 82°                                                                                                                                                      | Preferred over a flat head in conical applications,<br>or when a more decorative finished look is desired.<br>The countersunk surface nests into<br>mating countersunk application sites.                                                  |  |
|             | Round<br>(U-drive)     | Has a semi-elliptical top surface<br>and a flat bearing<br>surface                                                                                                                                                                                           | Standard head style for drive screws.<br>Provides efficient non-torque fastening<br>for high-speed assembly.                                                                                                                               |  |
| DRIVE TYPES |                        |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |  |
| Schematic   |                        |                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                            |  |

| Schematic     | ŀ                                                                                       | $\square$                                                                                                                         |                                                                                                                               |                                                                                               | $(\mathfrak{S})$                                                                                                       |                                                                                                      |
|---------------|-----------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Drive<br>Type | Phillips                                                                                | Slotted                                                                                                                           | Phillips/Sq. Drive<br>Combination                                                                                             | Hex / Slotted-hex                                                                             | Torx                                                                                                                   | Square                                                                                               |
| Uses          | Increases productivity<br>with excellent torque<br>transmission and<br>resists cam-out. | Accepts standard blade<br>screwdriver. Requires<br>less downward pressure<br>to drive parts than those<br>with recessed openings. | Accepts Phillips and<br>square drive<br>screwdrivers. Used<br>when fastener is<br>expected to be backed<br>out several times. | Accepts hex wrench.<br>Slotted drive is added to<br>make it easier to remove<br>the fastener. | Positive-engaging,<br>fast-locating method<br>which transmits drive<br>torque with less required<br>downward pressure. | Provides good control in<br>driving. Always use a<br>driver bit of proper size<br>in good condition. |

<sup>28</sup> www.boltsupply.com

markin

# **MACHINE SCREWS – HEAD STYLES**

| Schema        | atic                                                                                | HS                                                                | lead<br>Style                                                                                                                           | Description                                                                                                                                                                                                       |                                                                                                                                                                                                       |                                                                                                         | Applications /<br>Advantages                                                                                                                                                        |                                                                                                                                                                                           |                                                                                                                    |  |
|---------------|-------------------------------------------------------------------------------------|-------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--|
|               |                                                                                     |                                                                   |                                                                                                                                         | Slotted pan heads have a flat or gently rounded top<br>surface, cylindrical sides and a flat bearing surface.<br>Phillips and torx pan heads have a rounded top,<br>cylindrical sides and a flat bearing surface. |                                                                                                                                                                                                       |                                                                                                         | Has a general purpose bearing area. Can be<br>substituted in most applications for round,<br>truss or binding heads.                                                                |                                                                                                                                                                                           |                                                                                                                    |  |
|               | Bi<br>Un                                                                            | nding<br>dercut                                                   | Has a rounded top surface and slightly tapered sides.<br>the bearing surface is flat with an annular undercut<br>adjacent to the shank. |                                                                                                                                                                                                                   |                                                                                                                                                                                                       |                                                                                                         | Preferred design for making a firm electrical connection.                                                                                                                           |                                                                                                                                                                                           |                                                                                                                    |  |
|               | 7                                                                                   | FI                                                                | at 82°                                                                                                                                  | A countersunk head with a flat top surface and a<br>cone-shaped bearing surface with a<br>head angle of approximately 82°.                                                                                        |                                                                                                                                                                                                       |                                                                                                         | Used i<br>a<br>Use a p                                                                                                                                                              | n applications where protr<br>bove the mating surface is<br>protrusion gauge when me                                                                                                      | rusion of the fastener<br>s unacceptable.<br>easuring head height.                                                 |  |
|               | 7                                                                                   | Un                                                                | Flat<br>dercut                                                                                                                          | Similar to an 82' flat head except that the head is<br>undercut to 70% of its normal side height.                                                                                                                 |                                                                                                                                                                                                       |                                                                                                         | Standard for short lengths because it allows greater<br>length of threads. Also avoids transition fillet and<br>assembly interference.                                              |                                                                                                                                                                                           |                                                                                                                    |  |
|               |                                                                                     | Fla                                                               | at 100°                                                                                                                                 | A<br>a c                                                                                                                                                                                                          | countersunk head with a flat<br>cone-shaped bearing surface<br>of approximately 1                                                                                                                     | top surface and<br>with a head angle<br>00°.                                                            | Preferred over an 82° flat head when fastening in soft<br>materials – the 100° countersunk head distributes<br>pressure over a larger surface area.                                 |                                                                                                                                                                                           |                                                                                                                    |  |
|               |                                                                                     | Fi                                                                | llister                                                                                                                                 | Has a rounded top surface, cylindrical sides, and a flat<br>bearing surface. The greater side height is what<br>distinguishes a fillister head from a pan head.                                                   |                                                                                                                                                                                                       |                                                                                                         | Preferred style for use in counterbored holes.                                                                                                                                      |                                                                                                                                                                                           |                                                                                                                    |  |
|               |                                                                                     | Indented<br>Hex                                                   |                                                                                                                                         | Has an indented top surface, six flat sides, and a flat bearing surface.                                                                                                                                          |                                                                                                                                                                                                       |                                                                                                         | Preferred in high volume assembly where pneumatic<br>equipment is used to drive the screw.<br>Can transmit significantly higher tightening<br>torque levels than other head styles. |                                                                                                                                                                                           |                                                                                                                    |  |
|               |                                                                                     | Indented Hex<br>Washer                                            |                                                                                                                                         | Hi<br>and                                                                                                                                                                                                         | Has an indented top surface, six flat sides and a<br>flat washer which projects beyond the sides<br>and provides a flat bearing surface. The washer and<br>hex head are formed together as one piece. |                                                                                                         |                                                                                                                                                                                     | greater protection to the r<br>rd indented hex head. Ind<br>uces likelihood of crushing                                                                                                   | nating surface than a<br>creases bearing area<br>g mating surfaces.                                                |  |
|               |                                                                                     | Truss                                                             |                                                                                                                                         | Has a low rounded top surface with a flat bearing<br>surface greater in area than a round-head screw<br>of the same nominal size.                                                                                 |                                                                                                                                                                                                       |                                                                                                         | We<br>in a<br>ab                                                                                                                                                                    | aker than pan or round he<br>ipplications where minima<br>ove the head. Truss profile<br>finished assembly ap                                                                             | eads but preferred<br>I clearance exists<br>e provides a trim,<br>pearance.                                        |  |
|               | $\geq$                                                                              | (                                                                 | Oval                                                                                                                                    | A                                                                                                                                                                                                                 | A countersunk head with a rounded top surface<br>and a cone-shaped bearing surface<br>of approximately 82°.                                                                                           |                                                                                                         |                                                                                                                                                                                     | Preferred over a flat head in conical applications,<br>or when a more decorative finished look is desired.<br>The countersunk surface nests into mating<br>countersunk application sites. |                                                                                                                    |  |
|               |                                                                                     | R                                                                 | ound                                                                                                                                    | На                                                                                                                                                                                                                | Has a semi-elliptical top surface and a flat bearing surface                                                                                                                                          |                                                                                                         | Sometimes preferred over pan head for its smooth surface and appearance.                                                                                                            |                                                                                                                                                                                           |                                                                                                                    |  |
| DRIVE TYPES   |                                                                                     |                                                                   |                                                                                                                                         | •                                                                                                                                                                                                                 |                                                                                                                                                                                                       |                                                                                                         |                                                                                                                                                                                     |                                                                                                                                                                                           |                                                                                                                    |  |
| Schematic     |                                                                                     |                                                                   |                                                                                                                                         | )                                                                                                                                                                                                                 | $\bigcirc$                                                                                                                                                                                            |                                                                                                         | )                                                                                                                                                                                   | $\bigcirc\bigcirc$                                                                                                                                                                        |                                                                                                                    |  |
| Drive<br>Type | Squa                                                                                | re                                                                | Phillips                                                                                                                                |                                                                                                                                                                                                                   | Slotted                                                                                                                                                                                               | Phillips/Sq.<br>Combinat                                                                                | Drive<br>ion                                                                                                                                                                        | Hex /<br>Slotted-hex                                                                                                                                                                      | Torx                                                                                                               |  |
| Uses          | Most recomme<br>type. Provides<br>trol in driving.<br>a driver bit of<br>in good co | ended drive<br>good con-<br>Always use<br>proper size<br>ndition. | Provides good c<br>in driving. Alway<br>a driver bit<br>in good conditi                                                                 | ontrol<br>s use<br>ion.                                                                                                                                                                                           | Accepts standard blade<br>screwdrivers. Requires<br>less downward pressure<br>to drive slotted parts<br>than it does those with<br>cross-dressed openings.                                            | Accepts Phillips an<br>drive screwdrivers<br>used when faste<br>expected to be dri<br>backed-out severa | d square<br>c. Often<br>ener is<br>ven and<br>al times.                                                                                                                             | Accepts hex wrench.<br>Slotted drive is added<br>to make it easier to<br>remove the fastener.                                                                                             | Positive-engaging,<br>fast-locating method<br>of transmitting drive<br>torque and optimizing<br>worker efficiency. |  |

| ontrol<br>s use<br>on. | Accepts standard blade<br>screwdrivers. Requires<br>less downward pressure<br>to drive slotted parts<br>than it does those with<br>cross-dressed openings. | Accepts Phillips and square<br>drive screwdrivers. Often<br>used when fastener is<br>expected to be driven and<br>backed-out several times. | Accepts hex wrench.<br>Slotted drive is added<br>to make it easier to<br>remove the fastener. | Positive-engaging,<br>fast-locating method<br>of transmitting drive<br>torque and optimizing<br>worker efficiency. |
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
|------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|

"PROFESSIONALS SERVING PROFESSIONALS"

www.boltsupply.com 29

# **POINT STYLES & PRE-DRILL GUIDE**

| 0 |  |
|---|--|
|   |  |
| - |  |
|   |  |
| 5 |  |
| п |  |
|   |  |
|   |  |

# **Point Styles**

Die Point: Minimum reduction of point is approximately 10% below maximum minor diameter.

Dog Point: Straight pointed section reduced in diameter slightly below root diameter of thread for ease in starting.

Pinch Point (Rounded): Point has rounded contour with pinch-off marks for aligning or assembling parts requiring pilot action.

Nail Point (Pinched): Has sharp point and slightly squared surface to lock against wood or other soft material.

Cupped Point: Depression in end reduces area in contact with surface to increase its holding power under pressure.

Cone Point: Offers smooth surface, accurate length, and sharp point.

Type A Point: Thread-forming screw for use in thin metal .015 to .050 thick.

Type AB Point: Thread-forming screw combining location-type point of Type A with thread size and pitch of Type B.

Type F Point: Thread-cutting machine screw with blunt tapered point, and multi-cutting edges. For heavy-gauge metals, die castings, and plastic.

Type FZ Point: Thread cutting. Blunt



UT ( PR

DUBIN

tapered point and multi-cutting edges. For plastics, die castings, metal-clad and resin-impregnated plywoods.



Type 25 Point: Thread-cutting. Type B thread with large chip clearing and cutting edges for plastics and other soft materials.



Self-Drilling: Eliminates all hole preparation - no punching, drilling, or tapping needed.

Drill Point: Cutting edge drills through sheet metal at peak speed. Mated threads increase strip and back-out pressures.

30

Gimlet Point: A cone-shaped threaded point that quickly penetrates and threads into softer materials.

| <br>THE | BOLT | SUPPLY | HOUSE | LTD. |
|---------|------|--------|-------|------|
|         |      |        |       |      |

Self-Tapping Screw Usage Guide Note: Point A/AB = Sharp B = Blunt

|              |                 | •           |          |          |
|--------------|-----------------|-------------|----------|----------|
| SCREW        | METAL           |             |          |          |
| SIZE<br>(in) | ( <b>a</b> a)   | (in)        | POINT    | DRILL    |
| No 4         | 28              | 016         | A/AB/B   | 44       |
| (.112)       | 26              | .019        | A/AB/B   | 44       |
| 24           | .025            | В           | 43       |          |
|              | 24              | .025        | A/AB     | 42       |
|              | 22              | .031        | A/AB/B   | 42       |
|              | 20              | .038        | A/AB/B   | 40       |
| No. 6        | 28              | .016        | В        | 37       |
| (.137)       | 26              | .019        | В        | 37       |
|              | 24              | .025        | В        | 43       |
|              | 22              | .031        | В        | 42       |
|              | 20              | .038        | В        | 35       |
| No. 6        | 28              | .016        | A/AB     | 39       |
| (.138)       | 26              | .019        | A/AB     | 39       |
|              | 24              | .025        | A/AB     | 39       |
|              | 22              | .031        | A/AB     | 38       |
| Ne 7         | 20              | .038        | A/AB     | 36       |
| INO. 7       | 20              | .019        | В        | 32       |
| (.151)       | 24              | .025        | B        | 32       |
|              | 22              | .031        | B        | 32       |
|              | <u>∠∪</u><br>19 | .030        | P        | 32       |
|              | 10              | .050        | B        | 20       |
| No 7         | 28              | 003         |          | 20       |
| (155)        | 20              | .010        |          | 32       |
| (.155)       | 24              | 023         | B        | 32       |
|              | 20              | 038         | B        | 32       |
|              | 18              | 050         | B        | 31       |
|              | 16              | 063         | B        | 30       |
| No 7         | 28              | 016         | A/AB     | 39       |
| (155)        | 26              | 019         | A/AB     | 39       |
| (.100)       | 24              | 025         | A/AB     | 39       |
|              | 22              | .031        | A/AB     | 38       |
|              | 20              | .038        | A/AB     | 36       |
| No. 8        | 26              | .019        | В        | 32       |
| (.163)       | 24              | .025        | В        | 32       |
| . ,          | 22              | .031        | В        | 32       |
|              | 20              | .038        | В        | 32       |
|              | 18              | .050        | В        | 30       |
| No. 8        | 26              | .019        | A/AB     | 33       |
| (.165)       | 24              | .025        | A/AB     | 39       |
|              | 22              | .031        | A/AB     | 38       |
|              | 20              | .038        | A/AB     | 36       |
| No. 10       | 26              | .019        | В        | 27       |
| (.186)       | 24              | .025        | В        | 27       |
|              | 22              | .031        | В        | 27       |
|              | 20              | .038        | В        | 27       |
|              | 18              | .050        | В        | 27       |
| No. 10       | 26              | .019        | A/AB     | 30       |
| (.191)       | 24              | .025        | A/AB     | 30       |
|              | 22              | .031        | A/AB     | 30       |
|              | 20              | .038        | A/AB     | 29       |
| NI- 40       | 18              | .050        | A/AB     | 25       |
| INO. 12      | 24              | .025        | B        | 19       |
| (.212)       | 22              | .031        | R        | 19       |
|              | 20              | .038        | <u> </u> | 19       |
| No. 10       | 10              | .050        | <u>ل</u> | 19       |
| (010)        | <u>24</u>       | .025        |          | 20       |
| (.210)       | 22              | 000         |          | 20       |
|              | <u>∠∪</u><br>19 | .038        |          | 24       |
| No. 14       | 10              | .000        |          | 1 /      |
| ( 251)       | 24              | .025        |          | 14       |
| (.201)       | 20              | .031        |          | 11       |
|              | 19              | .030        |          | 0        |
| No. 14       | 22              | .030        | R        | 12       |
| ( 243)       | 20              | .031<br>038 | D        | 13       |
| (.=+0)       | 18              | 050         | B        | 11       |
|              | 16              |             | 5<br>R   | <u>م</u> |
|              | 10              | .000        |          | 0        |

www.boltsupply.com

# SELF DRILLING FASTENER SELECTION GUIDE



# DECIMAL EQUIVALENTS OF STANDARD GAUGES OF SHEET STEEL & ALUMINUM

| Number   |          | Sheet |
|----------|----------|-------|
| of Gauge | Aluminum | Steel |
| 000000   | .580     | -     |
| 00000    | .5165    | -     |
| 0000     | .4600    | .4062 |
| 000      | .4096    | .375  |
| 00       | .3658    | .3437 |
| 0        | .3249    | .3125 |
| 1        | .2893    | .2812 |
| 2        | .2576    | .2656 |
| 3        | .2294    | .2391 |
| 4        | .2043    | .2242 |
| 5        | .1819    | .2092 |
| 6        | .1620    | .1943 |
| 7        | .1443    | .1793 |
|          | .1285    | .1644 |
| 9        | .1144    | .1495 |
| 10       | .1019    | .1345 |
| 11       | .0907    | .1196 |
| 12       | .0808    | .1046 |
| 13       | .0720    | .0897 |
| 14       | .0641    | .0747 |
| 15       | .0571    | .0673 |
| 16       | .0506    | .0598 |
| 17       | .0453    | .0538 |
| 18       | .0403    | .0478 |
| 19       | .0359    | .0418 |
| 20       | .0320    | .0359 |
| 21       | .0285    | .0329 |
| 22       | .0253    | .0299 |
| 23       | .0226    | .0269 |
| 24       | .0201    | .0239 |
| 25       | .0179    | .0209 |
| 26       | .0159    | .0179 |
| 27       | .0142    | .0164 |
| 28       | .0126    | .0149 |
| 29       | .0113    | .0135 |
|          | .0100    | .0120 |
| 31       | .0089    | .0105 |
| 32       | .0080    | .0097 |
| 33       | .0071    | .0090 |
| 34       | .0063    | .0082 |
| 35       | .0056    | .0075 |
| 36       | .0050    | .0067 |
| 37       | .0045    | .0064 |
| 38       | .0040    | .0060 |
|          |          |       |

#### PLATING - COATINGS - FINISH

ZINC – Most common form of corrosion protection. "Commercial" zinc is electrically applied to a thickness of .00015 to .0002". CADMIUM – A significantly better coating than zinc in salt environments with excellent lubricity. Applied electrically to a thickness of .0003 to .0005". Cadmium has become very expensive in recent years because of EPA regulations concerning disposal of its plating by-products. MECHANICAL or PEEN plating – Utilizes glass balls or beads to mechanically pound a coating of zinc on to the fastener to an approximate thickness of .0065". Equal to "Hot Dip" Galvanizing. COATINGS – Newest and most significant improvement in corrosion protection. IE Stalgard – Climaseal. These coatings are applied like paint over a zinc plated fastener and offer a superior form of protection.



**HEAD STYLE:** Determine if the head style chosen will ensure stability during driving, and give the desired finished appearance and corrosion resistance.



sure that the choice of threads will provide good connection strength. Use "Recommended Material Thickness" column in chart below.

**THREAD DIAMETER & TYPE:** Make



**PILOT LENGTH:** Make sure that the drilling operation will be completed before the threading operation begins.



column in the chart below to determine if the point length is long enough.

FLUTE LENGTH: Use the "Point Length"



**USE THE RIGHT TOOL:** A 1900 to 2500 RPM screwgun rated at 4 amps or more, with a properly adjusted depth-locating nosepiece must be used for the best fastening results.

|                                          |          | Recommended  |        |
|------------------------------------------|----------|--------------|--------|
|                                          |          | Material     | Point  |
| To Use                                   | Diameter | Thickness    | Length |
|                                          | No. 4    | .035 to .080 | .140   |
| TO T | No. 6    | .035 to .090 | .140   |
|                                          | No. 8    | .035 to .100 | .156   |
| ******                                   | No. 10   | .035 to .110 | .203   |
| Type 2                                   | No. 12   | .035 to .187 | .234   |
|                                          | 1/4"     | .035 to .175 | .296   |
|                                          |          |              |        |
|                                          | No. 6    | .090 to .110 | .171   |
| hanna i                                  | No. 8    | .100 to .140 | .203   |
|                                          | No. 10   | .110 to .175 | .250   |
|                                          | No. 12   | .110 to .210 | .281   |
| Туре 3                                   | 1/4"     | .110 to .220 | .312   |
|                                          |          |              |        |
| MARAN                                    | No. 11   | .175 to .312 | .387   |
|                                          | No. 12   | .175 to .250 | .281   |
|                                          | 1/4"     | .175 to .250 | .312   |
| Туре 4                                   |          |              |        |
|                                          |          |              |        |
|                                          | No. 10   | .175 to .315 | .406   |
|                                          | No. 12   | .210 to .375 | .437   |
|                                          | 1/4"     | .250 to .375 | .468   |
| Special Type 3 or 4                      |          |              |        |
|                                          |          |              |        |
| Dril-it                                  | No. 12   | .250 to .500 | .625   |
| Type 5                                   |          |              |        |

"PROFESSIONALS SERVING PROFESSIONALS"

www.boltsupply.com <sup>31</sup>

# **BULK/PACKAGED QUANTITIES GUIDE**

#### $\cap$ THE BOLT SUPPLY HOUSE LTD.

### **BULK GRADE 5 AND 8 CAPSCREWS**

| BOEN GR     |      |       |      |       |      |       |        |      | $\bigcirc \bigcirc$ | ) () () () () () () () () () () () () () |        |        |        |
|-------------|------|-------|------|-------|------|-------|--------|------|---------------------|------------------------------------------|--------|--------|--------|
|             |      |       |      |       |      |       | Diamet | ter  |                     |                                          |        |        |        |
| Length (in) | 1/4" | 5/16" | 3/8" | 7/16" | 1/2" | 9/16" | 5/8"   | 3/4" | 7/8"                | 1"                                       | 1-1/8" | 1-1/4" | 1-1/2" |
| 1/2         | 3300 | 1950  | 1300 |       |      |       |        |      |                     |                                          |        |        |        |
| 5/8         | 3000 | 1800  | 1200 |       |      |       |        |      |                     |                                          |        |        |        |
| 3/4         | 2700 | 1650  | 1100 | 750   | 475  |       |        |      |                     |                                          |        |        |        |
| 1           | 2200 | 1400  | 900  | 650   | 400  | 350   | 250    | 150  |                     |                                          |        |        |        |
| 1-1/4       | 1900 | 1100  | 800  | 550   | 375  | 300   | 225    | 140  |                     |                                          |        |        |        |
| 1-1/2       | 1600 | 1000  | 675  | 500   | 300  | 275   | 200    | 125  | 85                  | 55                                       |        |        |        |
| 1-3/4       | 1400 | 850   | 600  | 450   | 275  | 250   | 175    | 120  | 80                  | 55                                       |        |        |        |
| 2           | 1200 | 800   | 550  | 400   | 250  | 225   | 175    | 100  | 75                  | 50                                       | 40     | 30     |        |
| 2-1/4       | 1000 | 700   | 450  | 350   | 225  | 200   | 150    | 100  | 70                  | 50                                       |        |        |        |
| 2-1/2       | 900  | 600   | 400  | 300   | 225  | 175   | 125    | 90   | 65                  | 45                                       | 35     | 25     |        |
| 2-3/4       | 750  | 550   | 400  | 300   | 200  | 150   | 125    | 85   | 60                  | 40                                       |        |        |        |
| 3           | 750  | 500   | 325  | 275   | 200  | 150   | 100    | 80   | 55                  | 40                                       | 30     | 25     | 15     |
| 3-1/4       | 600  | 450   | 325  | 250   | 175  | 125   | 100    | 75   | 50                  | 40                                       |        |        |        |
| 3-1/2       | 550  | 450   | 300  | 225   | 150  | 125   | 100    | 70   | 50                  | 35                                       | 30     | 20     | 15     |
| 3-3/4       | 500  | 400   | 250  | 225   | 150  | 125   | 100    | 65   | 45                  | 35                                       |        |        |        |
| 4           | 450  | 400   | 250  | 200   | 150  | 100   | 90     | 60   | 45                  | 35                                       | 25     | 20     | 12     |
| 4-1/2       | 450  | 300   | 225  | 175   | 125  | 100   | 80     | 55   | 40                  | 30                                       | 20     | 15     | 12     |
| 5           | 400  | 250   | 225  | 150   | 125  | 100   | 75     | 45   | 35                  | 25                                       | 20     | 15     | 11     |
| 5-1/2       | 400  | 250   | 175  | 150   | 100  | 75    | 70     | 45   | 35                  | 25                                       | 20     | 15     | 10     |
| 6           | 350  | 250   | 175  | 125   | 100  | 75    | 65     | 40   | 30                  | 25                                       | 15     | 15     | 10     |
| 6-1/2       |      |       | 175  |       | 100  |       | 60     | 40   | 30                  | 20                                       | 15     | 14     | 9      |
| 7           |      |       | 150  |       | 90   |       | 55     | 35   | 25                  | 20                                       | 15     | 12     | 9      |
| 7-1/2       |      |       | 150  |       | 80   |       | 55     | 35   | 25                  | 20                                       | 15     | 12     | 8      |
| 8           |      |       | 150  |       | 80   |       | 50     | 35   | 25                  | 18                                       | 15     | 10     | 8      |
| 9           |      |       | 130  |       | 75   |       | 45     | 30   | 23                  | 15                                       | 13     | 10     | 7      |
| 10          |      |       | 120  |       | 65   |       | 40     | 30   | 20                  | 15                                       | 12     | 10     | 6      |

#### WASHERS AND HEX NUTS

100

55

12

|        |     |         |       |       |           |       |           | USS WASHERS | SAE WASHERS |      |         |
|--------|-----|---------|-------|-------|-----------|-------|-----------|-------------|-------------|------|---------|
| Length |     | HEX NUT | rs    | USS V | VASHERS   | SAE V | VASHERS   | Qty/100 lb  | Qty/100 lb  | LOCK | VASHERS |
| (in)   | Pkg | Case    | Bulk  | Pkg   | Bulk (lb) | Pkg   | Bulk (lb) | (approx)    | (approx)    | Pkg  | Case    |
| #6     | 100 | 2000    | 15000 | 100   | 50        |       |           |             |             | 100  | 7500    |
| #8     | 100 | 2000    | 15000 | 100   | 50        |       |           |             |             | 100  | 7500    |
| #10    | 100 | 2000    | 15000 | 100   | 50        |       |           | 29400       |             | 100  | 7500    |
| 1/4    | 100 | 2000    | 5500  | 100   | 50        | 100   | 50        | 16200       | 24400       | 100  | 7500    |
| 5/16   | 100 | 2000    | 3600  | 100   | 50        | 100   | 50        | 9600        | 21200       | 100  | 7500    |
| 3/8    | 100 | 1500    | 2500  | 100   | 50        | 100   | 50        | 7460        | 15140       | 100  | 7500    |
| 7/16   | 50  | 800     | 1400  | 50    | 50        | 50    | 50        | 3800        | 11360       | 50   | 3750    |
| 1/2    | 50  | 800     | 1000  | 50    | 50        | 50    | 50        | 2740        | 5900        | 50   | 2500    |
| 9/16   | 25  | 300     | 650   | 25    | 50        | 25    | 50        | 2300        | 5740        | 25   | 1250    |
| 5/8    | 25  | 300     | 540   | 25    | 50        | 25    | 50        | 1290        | 3880        | 25   | 1250    |
| 3/4    | 20  |         | 325   | 20    | 50        | 20    | 50        | 1000        | 2360        | 20   | 1000    |
| 7/8    | 20  |         | 200   | 20    | 50        | 20    | 50        | 720         | 1720        | 20   | 780     |
| 1      | 20  |         | 135   | 20    | 50        | 20    | 50        | 580         | 1310        | 20   | 40      |
| 1-1/8  | 15  |         | 95    | 15    | 50        |       |           | 490         |             | 15   | 300     |
| 1-1/4  | 15  |         | 65    | 15    | 50        |       |           | 520         |             | 15   | 300     |
| 1-3/8  | 10  |         | 50    | 10    | 50        |       |           | 360         |             | 10   | 150     |
| 1-1/2  | 10  |         | 40    | 10    | 50        |       |           | 340         |             | 10   | 150     |
| 1-5/8  |     |         | 30    | 10    | 50        |       |           | 250         |             |      |         |
| 1-3/4  |     |         | 23    | 10    | 50        |       |           | 230         |             |      |         |
| 2      |     |         | 15    | 10    | 50        |       |           | 180         |             |      |         |
| 2-1/4  |     |         | 10    |       |           |       |           |             |             |      |         |
| 2-1/2  |     |         | 8     |       |           |       |           |             |             |      |         |
| 2-3/4  |     |         | 6     |       |           |       |           |             |             |      |         |
| 3      |     |         | 5     |       |           |       |           |             |             |      |         |

35

25

17

13

10



32

"When I am working on a problem, I never think about beauty. I think only about how to solve the problem. But when I have finished, if the solution is not beautiful, I know it is wrong."

**BUCKMINSTER FULLER** 

www.boltsupply.com

"PROFESSIONALS SERVING PROFESSIONALS"



5

8